1 resultado para Randalls Island (N.Y.)--Maps, Topographic.
em WestminsterResearch - UK
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (27)
- Adam Mickiewicz University Repository (1)
- Aquatic Commons (15)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (5)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (20)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (3)
- CentAUR: Central Archive University of Reading - UK (6)
- Center for Jewish History Digital Collections (6)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- Digital Archives@Colby (1)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Harvard University (271)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (2)
- Instituto Politécnico de Santarém (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Memoria Académica - FaHCE, UNLP - Argentina (49)
- Ministerio de Cultura, Spain (10)
- National Center for Biotechnology Information - NCBI (2)
- Portal de Revistas Científicas Complutenses - Espanha (9)
- Publishing Network for Geoscientific & Environmental Data (62)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (10)
- Queensland University of Technology - ePrints Archive (7)
- Repositorio Académico de la Universidad Nacional de Costa Rica (7)
- Repositório Científico da Universidade de Évora - Portugal (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- Repositorio Institucional Universidad de Medellín (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- South Carolina State Documents Depository (14)
- Universidad Autónoma de Nuevo León, Mexico (16)
- Universidad de Alicante (27)
- Universidad del Rosario, Colombia (23)
- Universidad Politécnica de Madrid (53)
- Universidad Politécnica Salesiana Ecuador (2)
- Universidade Complutense de Madrid (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (9)
- Université de Montréal, Canada (2)
- University of Michigan (54)
- University of Queensland eSpace - Australia (6)
- University of Washington (3)
- USA Library of Congress (96)
- WestminsterResearch - UK (1)
Resumo:
This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction.