6 resultados para REMEDIAL ACTION
em WestminsterResearch - UK
Resumo:
This paper proposes a method for analysing the operational complexity in supply chains by using an entropic measure based on information theory. The proposed approach estimates the operational complexity at each stage of the supply chain and analyses the changes between stages. In this paper a stage is identified by the exchange of data and/or material. Through analysis the method identifies the stages where the operational complexity is both generated and propagated (exported, imported, generated or absorbed). Central to the method is the identification of a reference point within the supply chain. This is where the operational complexity is at a local minimum along the data transfer stages. Such a point can be thought of as a ‘sink’ for turbulence generated in the supply chain. Where it exists, it has the merit of stabilising the supply chain by attenuating uncertainty. However, the location of the reference point is also a matter of choice. If the preferred location is other than the current one, this is a trigger for management action. The analysis can help decide appropriate remedial action. More generally, the approach can assist logistics management by highlighting problem areas. An industrial application is presented to demonstrate the applicability of the method.
Resumo:
This paper proposes a method for the design of gear tooth profiles using parabolic curve as its line of action. A mathematical model, including the equation of the line of action, the equation of the tooth profile, and the equation of the conjugate tooth profile, is developed based on the meshing theory. The equation of undercutting condition is derived from the model. The influences of the two design parameters, that present the size (or shape) of the parabolic curve relative to the gear size, on the shape of tooth profiles and on the contact ratio are also studied through the design of an example drive. The strength, including the contact and the bending stresses, of the gear drive designed by using the proposed method is analyzed by an FEA simulation. A comparison of the above characteristics of the gear drive designed with the involute gear drive is also carried out in this work. The results confirm that the proposed design method is more flexible to control the shape of the tooth profile by changing the parameters of the parabola.