13 resultados para RECONFIGURABLE COMPUTING
em WestminsterResearch - UK
Resumo:
Reconfigurable computing is becoming an important new alternative for implementing computations. Field programmable gate arrays (FPGAs) are the ideal integrated circuit technology to experiment with the potential benefits of using different strategies of circuit specialization by reconfiguration. The final form of the reconfiguration strategy is often non-trivial to determine. Consequently, in this paper, we examine strategies for reconfiguration and, based on our experience, propose general guidelines for the tradeoffs using an area-time metric called functional density. Three experiments are set up to explore different reconfiguration strategies for FPGAs applied to a systolic implementation of a scalar quantizer used as a case study. Quantitative results for each experiment are given. The regular nature of the example means that the results can be generalized to a wide class of industry-relevant problems based on arrays.
Resumo:
A miniature optically reconfigurable ultra-wideband CPW bandpass filter is proposed. With the optical switch in the ON state (200W), the circuit behaves as a bandpass filter while in the OFF state (0W), the circuit behaves as a bandstop filter within the same frequency band. The simulation results of the proposed bandpass/bandstop filter are presented.
Resumo:
A compact highly linear microstrip dual - mode optically switchable filter and a reconfigurable power amplifier are presented. The key characteristics of the dual - mode switchable filter are investigated and described. A second order filter design procedure is outlined to facilitate the realisation of Butterworth and Chebyshev functions. The proposed filter was built and tested with an optical switch, which comprised of a silicon dice acti vated using near infrared light. The measured and simulated results are in good agreement. The measured insertion loss in the ON state was 3.0 dB the isolation in the OFF state was 45 dB at the centre frequency. An evaluation of filter distortion is presen ted for digitally modulated M - QAM and M - QAM OFDM singals.
Resumo:
This paper presents an optically reconfigurable E-plane waveguide resonator and filter. N-type silicon dice doped with phosphorus is used as the switching element and is connected to the edge of a metallic fin. Illumination of the silicon dice allows realization of a different length of the fin, thus creating a shift in resonant frequency of the structure. Frequency tuning range up to about 5.2% is achieved for the resonator as well as the filter. Measurements on a fabricated optically reconfigurable resonator confirm the accuracy of the design procedure. Measured responses show good agreement with simulation.
Resumo:
A novel, compact and highly selective microstrip bandpass filter with bandwidth reconfigurability for ultra-wideband (UWB) applications is presented. The proposed design uses stepped impedance resonator (SIR) for realization of bandpass filter (BPF) and employs a single varactor diode (BB135-NXP) for the purpose of reconfiguring bandwidth. Additionally, to improve the selectivity between passband edges, a cross-coupling between I/O feed lines is introduced which generated pairs of attenuation poles at each side of the passband. Measurements on a fabricated reconfigurable filter confirm the accuracy of the design procedure. Measured responses show good agreement with simulation. The proposed filter is able to achieve significant size reduction (8.5 mm × 7.1 mm excluding the feeding ports) as compared to the conventional bandpass filters with reconfigurable bandwidth.
Resumo:
The potential of cloud computing is gaining significant interest in Modeling & Simulation (M&S). The underlying concept of using computing power as a utility is very attractive to users that can access state-of-the-art hardware and software without capital investment. Moreover, the cloud computing characteristics of rapid elasticity and the ability to scale up or down according to workload make it very attractive to numerous applications including M&S. Research and development work typically focuses on the implementation of cloud-based systems supporting M&S as a Service (MSaaS). Such systems are typically composed of a supply chain of technology services. How is the payment collected from the end-user and distributed to the stakeholders in the supply chain? We discuss the business aspects of developing a cloud platform for various M&S applications. Business models from the perspectives of the stakeholders involved in providing and using MSaaS and cloud computing are investigated and presented.
Resumo:
Researchers want to analyse Health Care data which may requires large pools of compute and data resources. To have them they need access to Distributed Computing Infrastructures (DCI). To use them it requires expertise which researchers may not have. Workflows can hide infrastructures. There are many workflow systems but they are not interoperable. To learn a workflow system and create workflows in a workflow system may require significant effort. Considering these efforts it is not reasonable to expect that researchers will learn new workflow systems if they want to run workflows of other workflow systems. As a result, the lack of interoperability prevents workflow sharing and a vast amount of research efforts is wasted. The FP7 Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs (SHIWA) project developed the Coarse-Grained Interoperability (CGI) to enable workflow sharing. The project created the SHIWA Simulation Platform (SSP) to support CGI as a production-level service. The paper describes how the CGI approach can be used for analysis and simulation in Health Care.
Resumo:
According to UN Women, to build stronger economies, it is essential to empower women to participate fully in economic life across all sectors. Increasing women and girls’ education enhances their chances to participate in the labor market. In certain cultures, like in Saudi Arabia, women contribution to the public economy growth is very limited. According to the World Bank, less than 20 percent of the female population participate in the labor force. This low participation rate has many reasons. One of them, is the educational level and educational quality for females. Although Saudi Arabia has about thirty three universities, opportunities are still limited for women because of the restrictions of access put upon them. A mixture of local norms, traditions, social beliefs, and principles preventing women from receiving full benefits from the educational system. Gender segregation is one of the challenges that limits the women access for education. It causes a problem due to the shortage of female faculty throughout the country. To overcome this problem, male faculty are allowed to teach female students under certain regulations and following a certain method of education delivery and interaction. However, most of these methods lack face-to-face communication between the teacher and students, which lowers the interactivity level and, accordingly, the students’ engagement, and increases the need for other alternatives. The e-learning model is one of high benefit for female students in such societies. Recognizing the students’ engagement is not straightforward in the e-learning model. To measure the level of engagement, the learner’s mood or emotions should be taken into consideration to help understanding and judging the level of engagement. This paper is to investigate the relationship between emotions and engagement in the e-learning environment, and how recognizing the learner’s emotions and change the content delivery accordingly can affect the efficiency of the e-learning process. The proposed experiment alluded to herein should help to find ways to increase the engagement of the learners, hence, enhance the efficiency of the learning process and the quality of learning, which will increase the chances and opportunities for women in such societies to participate more effectively in the labor market.
Resumo:
In this paper we present a concept of an agent-based strategy to allocate services on a Cloud system without overloading nodes and maintaining the system stability with minimum cost. To provide a base for our research we specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. We also present an early version of simulation environment and a prototype of agent-based load balancer implemented in functional language Scala and Akka framework.
Resumo:
This paper introduces a strategy to allocate services on a cloud system without overloading the nodes and maintaining the system stability with minimum cost. We specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. A prototype meta-heuristic load balancer is demonstrated and experimental results are presented and discussed. We also propose a novel genetic algorithm, where population is seeded with the outputs of other meta-heuristic algorithms.