6 resultados para Product development process (PDP)
em WestminsterResearch - UK
Resumo:
Revenue and production output of the United Kingdom’s Aerospace Industry (AI) is growing year on year and the need to develop new products and innovative enhancements to existing ranges is creating a critical need for the increased utilisation and sharing of employee knowledge. The capture of employee knowledge within the UK’s AI is vital if it is to retain its pre-eminent position in the global marketplace. Crowdsourcing, as a collaborative problem solving activity, allows employees to capture explicit knowledge from colleagues and teams and also offers the potential to extract previously unknown tacit knowledge in a less formal virtual environment. By using micro-blogging as a mechanism, a conceptual framework is proposed to illustrate how companies operating in the AI may improve the capture of employee knowledge to address production-related problems through the use of crowdsourcing. Subsequently, the framework has been set against the background of the product development process proposed by Maylor in 1996 and illustrates how micro-blogging may be used to crowdsource ideas and solutions during product development. Initial validation of the proposed framework is reported, using a focus group of 10 key actors from the collaborating organisation, identifying the perceived advantages, disadvantages and concerns of the framework; results indicate that the activity of micro-blogging for crowdsourcing knowledge relating to product development issues would be most beneficial during product conceptualisation due to the requirement for successful innovation.
Resumo:
As identified by Griffin (1997) and Kahn (2012), manufacturing organisations typically improve their market position by accelerating their product development (PD) cycles. One method for achieving this is to reduce the time taken to design, test and validate new products, so that they can reach the end customer before competition. This paper adds to existing research on PD testing procedures by reporting on an exploratory investigation carried out in a UK-based manufacturing plant. We explore the organisational and managerial factors that contribute to the time spent on testing of new products during development. The investigation consisted of three sections, viz. observations and process modelling, utilisation metrics and a questionnaire-based investigation, from which a proposed framework to improve and reduce the PD time cycle is presented. This research focuses specifically on the improvement of the utilisation of product testing facilities and the links to its main internal stakeholders - PD engineers.
Resumo:
Employee collaboration and knowledge sharing is vital for manufacturing organisations wishing to be successful in an ever-changing global market place; Product Development (PD) teams, in particular, rely heavily on these activities to generate innovative designs and enhancements to existing product ranges. To this end, the purpose of this paper is to present the results of a validation study carried out during an Engineering Education Scheme project to confirm the benefits of using bespoke Web 2.0-based groupware to improve employee collaboration and knowledge sharing between dispersed PD teams. The results of a cross-sectional survey concluded that employees would welcome greater usage of social computing technologies. The study confirmed that groupware offers the potential to deliver a more effective collaborative and knowledge sharing environment with additional communication channels on offer. Furthermore, a series of recommended guidelines are presented to show how PD teams, operating in globally dispersed organisations, may use Web 2.0 tools to improve employee collaboration and knowledge sharing.
Resumo:
Purpose: This paper presents a combined multi-phase supplier selection model. The process repeatedly revisits the criteria and sourcing decision as the development process continues. This enables a structured adoption of product and production system innovation from strategic suppliers, where previously the literature purely focuses on product innovation or cost reduction. Design/methodology/approach: The authors adopted an embedded researcher style, inductive, qualitative case study of an industrial supply cluster comprising a focal automotive company and its interaction with three different strategic stamping suppliers. Findings: Our contribution is the multi-phased production and product innovation process. This is an advance from traditional supplier selection and also an extension of ideas of supplier-located product development as it includes production system development, and complements the literature on working with strategic suppliers. Specifically, we explicitly articulate the previously unreported issue of whether a supplier chosen for its innovation capabilities at the start of the new product development process will also be the most appropriate supplier during the production system development phase, when an ability to work collaboratively may be the most important attribute, or in the large-scale production phase when an ability to manufacture at low unit cost may be most important. Originality/value: The paper identifies a multi-phase approach to tendering within a fixed body of strategic suppliers which seeks to identify the optimum technological and process decisions as well as the traditional supplier sourcing choice. These areas have not been combined before and generate a valuable approach for firms to adopt as well as for researchers to extend our understanding of a highly complex process.
Resumo:
In global engineering enterprises, information and knowledge sharing are critical factors that can determine a project’s success. This statement is widely acknowledged in published literature. However, according to some academics, tacit knowledge is derived from a person’s lifetime of experience, practice, perception and learning, which makes it hard to capture and document in order to be shared. This project investigates if social media tools can be used to improve and enable tacit knowledge sharing within a global engineering enterprise. This paper first provides a brief background of the subject area, followed by an explanation of the industrial investigation, from which the proposed knowledge framework to improve tacit knowledge sharing is presented. This project’s main focus is on the improvement of collaboration and knowledge sharing amongst product development engineers in order to improve the whole product development cycle.
Resumo:
Energy-using Products (EuPs) contribute significantly to the United Kingdom’s CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products (such as minimum performance standards, energy labelling, enhanced capital allowances, etc.) can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. While these policies can impose costs on the producers and consumers of these products in the short run, the process of product innovation may reduce the magnitude of these costs over time. If this is the case, then it is important that the impacts of innovation are taken into account in policy impact assessments. Previous studies have found considerable evidence of experience curve effects for EuP categories (e.g. refrigerators, televisions, etc.), with learning rates of around 20% for both average unit costs and average prices; similar to those found for energy supply technologies. Moreover, the decline in production costs has been accompanied by a significant improvement in the energy efficiency of EuPs. Building on these findings and the results of an empirical analysis of UK sales data for a range of product categories, this paper sets out an analytic framework for assessing the impact of EuP policy interventions on consumers and producers which takes explicit account of the product innovation process. The impact of the product innovation process can be seen in the continuous evolution of the energy class profiles of EuP categories over time; with higher energy classes (e.g. A, A+, etc.) entering the market and increasing their market share, while lower classes (e.g. E, F, etc.) lose share and then leave the market. Furthermore, the average prices of individual energy classes have declined over their respective lives, while new classes have typically entered the market at successively lower “launch prices”. Based on two underlying assumptions regarding the shapes of the “lifecycle profiles” for the relative sales and the relative average mark-ups of individual energy classes, a simple simulation model is developed that can replicate the observed market dynamics in terms of the evolution of market shares and average prices. The model is used to assess the effect of two alternative EuP policy interventions – a minimum energy performance standard and an energy-labelling scheme – on the average unit cost trajectory and the average price trajectory of a typical EuP category, and hence the financial impacts on producers and consumers.