5 resultados para Process Modelling, Process Management, Risk Modelling
em WestminsterResearch - UK
Resumo:
In the crisis-prone and complex contemporary business environment, modern organisations and their supply chains, large and small, are challenged by crises more than ever. Knowledge management has been acknowledged as an important discipline able to support the management of complexity in times of crisis. However, the role of effective knowledge retrieval and sharing in the process of crisis prevention, management and survival has been relatively underexplored. In this paper, it is argued that organisational crises create additional challenges for knowledge management, mainly because complex, polymorphic and both structured and unstructured knowledge must be efficiently harnessed, processed and disseminated to the appropriate internal and external supply chain actors, under specific time constraints. In this perspective, a process-based approach is proposed to address the knowledge management needs of organisations during a crisis and to help management in establishing the necessary risk avoidance and recovery mechanisms. Finally, the proposed methodological approach is applied in a knowledge- intensive Greek small and medium enterprise from the pharmaceutical industry, producing empirical results, insights on knowledge pathologies during crises and relevant evaluations.
Resumo:
Knowledge and its management have been respectively accepted as a critical resource and a core business competency. Despite that literature proves the existence of a gap between the theoretical considerations of Knowledge Management (KM) and their efficient application. Such lacking, we argue, derives from the missing link between a framework of Knowledge Management and the particular methods and guidelines of its implementation. In an attempt to bridge this gap, an original, process- based holistic Knowledge Management framework is proposed, aiming to address the problem of knowledge management application and performance by utilising a set of well accepted Enterprise Modelling (EM) methods and tools.
Resumo:
Existing Workflow Management Systems (WFMSs) follow a pragmatic approach. They often use a proprietary modelling language with an intuitive graphical layout. However the underlying semantics lack a formal foundation. As a consequence, analysis issues, such as proving correctness i.e. soundness and completeness, and reliable execution are not supported at design level. This project will be using an applied ontology approach by formally defining key terms such as process, sub-process, action/task based on formal temporal theory. Current business process modelling (BPM) standards such as Business Process Modelling Notation (BPMN) and Unified Modelling Language (UML) Activity Diagram (AD) model their constructs with no logical basis. This investigation will contribute to the research and industry by providing a framework that will provide grounding for BPM to reason and represent a correct business process (BP). This is missing in the current BPM domain, and may result in reduction of the design costs and avert the burden of redundant terms used by the current standards. A graphical tool will be introduced which will implement the formal ontology defined in the framework. This new tool can be used both as a modelling tool and at the same time will serve the purpose of validating the model. This research will also fill the existing gap by providing a unified graphical representation to represent a BP in a logically consistent manner for the mainstream modelling standards in the fields of business and IT. A case study will be conducted to analyse a catalogue of existing ‘patient pathways’ i.e. processes, of King’s College Hospital NHS Trust including current performance statistics. Following the application of the framework, a mapping will be conducted, and new performance statistics will be collected. A cost/benefits analysis report will be produced comparing the results of the two approaches.
Resumo:
Existing Workflow Management Systems (WFMSs) follow a pragmatic approach. They often use a proprietary modelling language with an intuitive graphical layout. However the underlying semantics lack a formal foundation. As a consequence, analysis issues, such as proving correctness i.e. soundness and completeness, and reliable execution are not supported at design level. This project will be using an applied ontology approach by formally defining key terms such as process, sub-process, action/task based on formal temporal theory. Current business process modelling (BPM) standards such as Business Process Modelling Notation (BPMN) and Unified Modelling Language (UML) Activity Diagram (AD) model their constructs with no logical basis. This investigation will contribute to the research and industry by providing a framework that will provide grounding for BPM to reason and represent a correct business process (BP). This is missing in the current BPM domain, and may result in reduction of the design costs and avert the burden of redundant terms used by the current standards. A graphical tool will be introduced which will implement the formal ontology defined in the framework. This new tool can be used both as a modelling tool and at the same time will serve the purpose of validating the model. This research will also fill the existing gap by providing a unified graphical representation to represent a BP in a logically consistent manner for the mainstream modelling standards in the fields of business and IT. A case study will be conducted to analyse a catalogue of existing ‘patient pathways’ i.e. processes, of King’s College Hospital NHS Trust including current performance statistics. Following the application of the framework, a mapping will be conducted, and new performance statistics will be collected. A cost/benefits analysis report will be produced comparing the results of the two approaches.
Resumo:
This paper aims to present a state-of-the-art review of the scope and practical implications of the Building Information Modelling (BIM) platform in the UK construction practice. Theoretical developments suggest that BIM is an integration of both product and process innovation, not just a disparate set of software tools. BIM provides effective collaboration, visual representation and data management, which enable the smooth flow of information throughout the project’s lifecycle. The most frequently reported benefits are related to Capital Cost (capex) and Operational costs (opex) and time savings. Key challenges, however, focus on the interoperability of software, capital installation costs, in-house experience, client preference and cultural issues within design teams and within the organisation. The paper concludes with a critical commentary on the changing roles and a process required to implement BIM in UK construction projects, and suggests areas for further research.