3 resultados para Plasma fatty acids
em WestminsterResearch - UK
Resumo:
The influence of the fatty acid composition of chylomicron remnant-like particles (CRLPs) on their uptake and induction of lipid accumulation in macrophages was studied. CRLPs containing triacylglycerol enriched in saturated, monounsaturated, n−6 or n−3 polyunsaturated fatty acids derived from palm, olive, corn or fish oil, respectively, and macrophages derived from the human monocyte cell line THP-1 were used. Lipid accumulation (triacylglycerol and cholesterol) in the cells was measured after incubation with CRLPs for 5, 24 and 48 h, and uptake over 24 h was determined using CRLPs radiolabelled with [3H]triolein. Total lipid accumulation in the macrophages was significantly greater with palm CRLPs than with the other three types of particle. This was mainly due to increased triacylglycerol concentrations, whereas changes in cholesterol concentrations did not reach significance. There were no significant differences in lipid accumulation after incubation with olive, corn or fish CRLPs. Palm and olive CRLPs were taken up by the cells at a similar rate, which was considerably faster than that observed with corn and fish CRLPs. These findings demonstrate that CRLPs enriched in saturated or monounsaturated fatty acids are taken up more rapidly by macrophages than those enriched in n−6 or n−3 polunsaturated fatty acids, and that the faster uptake rate results in greater lipid accumulation in the case of saturated fatty acid-rich particles, but not monounsaturated fatty acid-rich particles. Thus, dietary saturated fatty acids carried in chylomicron remnants may enhance their propensity to induce macrophage foam cell formation.
Resumo:
Objective: To investigate the effect of nutrient stimulation of gut hormones by oligofructose supplementation on appetite, energy intake (EI), body weight (BW) and adiposity in overweight and obese volunteers. Methods: In a parallel, single-blind and placebo-controlled study, 22 healthy overweight and obese volunteers were randomly allocated to receive 30 g day−1 oligofructose or cellulose for 6 weeks following a 2-week run-in. Subjective appetite and side effect scores, breath hydrogen, serum short chain fatty acids (SCFAs), plasma gut hormones, glucose and insulin concentrations, EI, BW and adiposity were quantified at baseline and post-supplementation. Results: Oligofructose increased breath hydrogen (P < 0.0001), late acetate concentrations (P = 0.024), tended to increase total area under the curve (tAUC)420mins peptide YY (PYY) (P = 0.056) and reduced tAUC450mins hunger (P = 0.034) and motivation to eat (P = 0.013) when compared with cellulose. However, there was no significant difference between the groups in other parameters although within group analyses showed an increase in glucagon-like peptide 1 (GLP-1) (P = 0.006) in the cellulose group and a decrease in EI during ad libitum meal in both groups. Conclusions: Oligofructose increased plasma PYY concentrations and suppressed appetite, while cellulose increased GLP-1 concentrations. EI decreased in both groups. However, these positive effects did not translate into changes in BW or adiposity.
Resumo:
OBJECTIVE: The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. DESIGN: To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. RESULTS: Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. CONCLUSIONS: These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans.