4 resultados para Physiology of Green mussel Perna Viridis

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercising in natural, green environments creates greater improvements in adult's self-esteem than exercise undertaken in urban or indoor settings. No comparable data are available for children. The aim of this study was to determine whether so called ‘green exercise’ affected changes in self-esteem; enjoyment and perceived exertion in children differently to urban exercise. We assessed cardiorespiratory fitness (20 m shuttle-run) and self-reported physical activity (PAQ-A) in 11 and 12 year olds (n = 75). Each pupil completed two 1.5 mile timed runs, one in an urban and another in a rural environment. Trials were completed one week apart during scheduled physical education lessons allocated using a repeated measures design. Self-esteem was measured before and after each trial, ratings of perceived exertion (RPE) and enjoyment were assessed after completing each trial. We found a significant main effect (F (1,74), = 12.2, p<0.001), for the increase in self-esteem following exercise but there was no condition by exercise interaction (F (1,74), = 0.13, p = 0.72). There were no significant differences in perceived exertion or enjoyment between conditions. There was a negative correlation (r = −0.26, p = 0.04) between habitual physical activity and RPE during the control condition, which was not evident in the green exercise condition (r = −0.07, p = 0.55). Contrary to previous studies in adults, green exercise did not produce significantly greater increases in self-esteem than the urban exercise condition. Green exercise was enjoyed more equally by children with differing levels of habitual physical activity and has the potential to engage less active children in exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article presents the “LungoSolofrana” project, carried out during the course “Urban and Mobility” in the academic year 2009/2010, held during the bachelor in Environmental Engineering at the University of Naples “Federico II”. The work has also been chosen as a finalist at the “UrbanPromo 2010” contest, the urban and territorial marketing event sponsored by the National Institute of Urban Planning and Urbit which was held in Venice in 2010. The project consists in a green mobility proposal, developed with an approach based on the integration of the environmental redevelopment of a portion of river Solofrana, located in the Salerno Province, and of the renewal of seven local stations of the railway line Mercato San Severino – Nocera Inferiore, including the realization of a cycle-path network for the natural environment fruition. Furthermore the work drew attention to the local and regional administration. The main intent of the project is to integrate sustainable mobility themes with the environment recovery in a territory affected by high environmental troubles. The area includes the municipalities of Nocera Inferiore, Nocera Superiore, Mercato San Severino, Castel San Giorgio and Roccapiemonte, situated in Salerno’s province, with a total population about 114.000 (font Demo ISTAT 2010). The area extension is about 84,30 sqkm and it is crossed by river Solofrana that is the central point of the project idea. The intervention strategy is defined in two kinds of actions: internal and external rail station interventions. The external rail station interventions regard the construction of pedestrian-cycle paths with the scope of increasing the spaces dedicated to cyclists and to pedestrians along the river Solofrana sides and to connect the urban areas with the railway station. In this way, it’s also possible to achieve an urban requalification of the interested area. On the other side, the interventions inside the station , according to Transit Oriented Development principles, aim at redeveloping common spaces with the insertion of new activities and at realizing new automatic cycle parks covered by photovoltaic panels. The project proposal consists of the urban regeneration of small railway stations along the route-Nocera-Codola Mercato San Severino in the province of Salerno, through interventions aimed at improving pedestrian accessibility. The project involves in particular the construction of pedestrian paths protected access to the station and connecting with neighboring towns and installation of innovative bike parking stations in elevation, covering surfaces coated with solar panels and spaces information. The project is aimed to propose a new model of sustainable transport for small and medium shifts as an alternative to private transportation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today more than 99% of plastics are petroleum-based because of the availability and cost of the raw material. The durability of disposed plastics contributes to the environmental problems as waste and their persistence in the environment causes deleterious effects on the ecosystem. Environmental pollution awareness and the demand for green technology have drawn considerable attention of both academia and industry into biodegradable polymers. In this regard green chemistry technology has the potential to provide solution to this issue. Enzymatic grafting has recently been the focus of green chemistry technologies due to the growing environmental concerns, legal restrictions, and increasing availability of scientific knowledge. Over the last several years, research covering various applications of robust enzymes like laccases and lipases has been increased rapidly, particularly in the field of polymer science, to graft multi-functional materials of interest. In principle, enzyme-assisted grafting may modify/impart a variety of functionalities to the grafted composites which individual materials fail to demonstrate on their own. The modified polymers through grafting have a bright future and their development is practically boundless. In the present study series of graft composites with poly(3-hydroxybutyrate) (P(3HB) as side chain and cellulose as a backbone polymer were successfully synthesised by introducing enzymatic grafting technique where laccase and lipase were used as model catalysts [1-3]. Subsequently, the resulting composites were removed from the casting surface under ambient environment and characterised by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) in detail. Moreover, the thermo-mechanical behaviours of the grafted composites were investigated by differential scanning calorimetry (DSC) and dynamic mechanical analyser (DMA) measurements, respectively. In addition, hydrophobic and hydrophilic characteristics of the grafted polymers were studied through drop contour analysis using water contact angle (WCA). In comparison to the individual counterparts improvement was observed in the thermo- mechanical properties of the composites to varied extent. The tensile strength, elongation at break, and Young’s modulus values of the composites reached their highest levels in comparison to the films prepared with pure P(3HB) only which was too fragile to measure any of the above said characteristics. Interestingly, untreated P(3HB) was hydrophobic in nature and after lipase treatment P(3HB) and P(3HB)-EC-based graft composite attained higher level of hydrophilicity. This is a desired characteristic that enhances the biocompatibility of the materials for proper cell adhesion and proliferation therefore suggesting potential candidates for tissue engineering/bio-medical type applications [3]. The present research will be a first step in the biopolymer modification. To date no report has been found in literature explaining the laccase/lipase assisted grafting of P(3HB) [1-3]. The newly grafted composites exhibit unique functionalities with wider range of potential applications in bio-plastics, pharmaceutical, and cosmetics industries, tissue engineering, and biosensors. [1] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Cellulose 21, 3613-3621 (2014). [2] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Carbohydrate Polymers 113, 131-137 (2014). [3] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Polymer Chemistry In-Press, DOI: 10.1039/C4PY0 0857J (2014).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today more than 99% of plastics are petroleum-based because of availability and cost of the raw material. The durability of these disposed plastics contributes to the environmental problems as waste and their persistence in the environment causes deleterious effects on the ecosystem. Environmental pollution awareness and the demand for green technology have drawn considerable attention of both academia and industry into biodegradable polymers. In this regard green chemistry technology has the potential to provide solution to this problematic issue. Laccase bio-grafting has recently been the focus of green chemistry technologies due to the growing environmental concerns, legal restrictions and increasing availability of scientific knowledge. In the last several years, research covering various applications of laccases has been increased rapidly particularly in the field of grafting. In principle, laccase-assisted graft co-polymerization may impart a variety of new functionalities to a polymer. The modified polymers through grafting have a bright future and their development is practically boundless. In present work, novel biodegradable graft copolymers combining the advantages of bacterial cellulose backbone and PHB side chains will be prepared by introducing enzymatic grafting technique. The present research will be a first step in the biopolymer modification. To date no report has been found in literature explaining the enzymatic grafting of PHAs. The technique would also provide an efficient modulation approach to improve the biodegradability and biocompatibility of the graft copolymer. The newly grafted copolymers will exhibit unique functionalities with wider range of potential applications mainly in tissue engineering, biosensors, pharmaceutical industry (drug delivery systems) and bio-plastics.