4 resultados para Patient Questionnaires
em WestminsterResearch - UK
Resumo:
Objective Measure Yourself Concerns and Wellbeing (MYCaW) is a patient-centred questionnaire that allows cancer patients to identify and quantify the severity of their ‘Concerns’ and Wellbeing, as opposed to using a pre-determined list. MYCaW administration is brief and aids in prioritising treatment approaches. Our goal was to assess the convergent validity and responsiveness of MYCaW scores over time, the generalisability of the existing qualitative coding framework in different complementary and integrative healthcare settings and content validity. Methods Baseline and 6-week follow-up data (n=82) from MYCaW and FACIT-SpEx questionnaires were collected for a service evaluation of the ‘Living Well With The Impact of Cancer’ course at Penny Brohn Cancer Care. MYCaW construct validity was determined using Spearman's Rank Correlation test, and responsiveness indices assessed score changes over time. The existing qualitative coding framework was reviewed using a new dataset (n=158) and coverage of concern categories compared to items of existing outcome measures. Results Good correlation between MYCaW and FACIT-SpEx score changes were achieved (r= -0.57, p≥0.01). MYCaW Profile and Concern scores were highly responsive to change: SRM=1.02 and 1.08; effect size=1.26 and 1.22. MYCaW change scores showed the anticipated gradient of change according to clinically relevant degrees of change. Categories including ‘Spirituality’, ‘weight change’ and ‘practical concerns’ were added to the coding framework to improve generalisability. Conclusions MYCaW scores were highly responsive to change, allowing personalized patient outcomes to be quantified; the qualitative coding framework is generalisable across different oncology settings and has broader coverage of patient-identified concerns compared with existing cancer-related patient-reported outcome measures.
Resumo:
Learning games such as role-play (which we refer to as “simulated interaction rituals”) are commonly used as social tools to develop trainee health practitioners. However, the effect of such rituals on individual and group participant emotions has not been carefully studied. Using a heuristic approach, we explore the experiences of complementary therapy practitioner trainees (and their trainers) participating in a personal development course. Ten trainees and two tutors were interviewed, observational notes taken, and a secondary qualitative analysis undertaken. Participants and tutors described a medley of disparate emotional and moral responses to group rituals, conceptualized in this article as “jumbled emotions.” Such emotions required disentangling, and both trainees and staff perceived participating in unfamiliar rituals “with relative strangers” as challenging. Front of stage effects are frequently processed “backstage,” as rituals threaten social embarrassment and confusion. Concerns around emotional triggers, authenticity, and outcomes of rituals arise at the time, yet trainees can find ways to work through these issues in time.
Resumo:
Existing Workflow Management Systems (WFMSs) follow a pragmatic approach. They often use a proprietary modelling language with an intuitive graphical layout. However the underlying semantics lack a formal foundation. As a consequence, analysis issues, such as proving correctness i.e. soundness and completeness, and reliable execution are not supported at design level. This project will be using an applied ontology approach by formally defining key terms such as process, sub-process, action/task based on formal temporal theory. Current business process modelling (BPM) standards such as Business Process Modelling Notation (BPMN) and Unified Modelling Language (UML) Activity Diagram (AD) model their constructs with no logical basis. This investigation will contribute to the research and industry by providing a framework that will provide grounding for BPM to reason and represent a correct business process (BP). This is missing in the current BPM domain, and may result in reduction of the design costs and avert the burden of redundant terms used by the current standards. A graphical tool will be introduced which will implement the formal ontology defined in the framework. This new tool can be used both as a modelling tool and at the same time will serve the purpose of validating the model. This research will also fill the existing gap by providing a unified graphical representation to represent a BP in a logically consistent manner for the mainstream modelling standards in the fields of business and IT. A case study will be conducted to analyse a catalogue of existing ‘patient pathways’ i.e. processes, of King’s College Hospital NHS Trust including current performance statistics. Following the application of the framework, a mapping will be conducted, and new performance statistics will be collected. A cost/benefits analysis report will be produced comparing the results of the two approaches.
Resumo:
Existing Workflow Management Systems (WFMSs) follow a pragmatic approach. They often use a proprietary modelling language with an intuitive graphical layout. However the underlying semantics lack a formal foundation. As a consequence, analysis issues, such as proving correctness i.e. soundness and completeness, and reliable execution are not supported at design level. This project will be using an applied ontology approach by formally defining key terms such as process, sub-process, action/task based on formal temporal theory. Current business process modelling (BPM) standards such as Business Process Modelling Notation (BPMN) and Unified Modelling Language (UML) Activity Diagram (AD) model their constructs with no logical basis. This investigation will contribute to the research and industry by providing a framework that will provide grounding for BPM to reason and represent a correct business process (BP). This is missing in the current BPM domain, and may result in reduction of the design costs and avert the burden of redundant terms used by the current standards. A graphical tool will be introduced which will implement the formal ontology defined in the framework. This new tool can be used both as a modelling tool and at the same time will serve the purpose of validating the model. This research will also fill the existing gap by providing a unified graphical representation to represent a BP in a logically consistent manner for the mainstream modelling standards in the fields of business and IT. A case study will be conducted to analyse a catalogue of existing ‘patient pathways’ i.e. processes, of King’s College Hospital NHS Trust including current performance statistics. Following the application of the framework, a mapping will be conducted, and new performance statistics will be collected. A cost/benefits analysis report will be produced comparing the results of the two approaches.