3 resultados para PROTOTYPE SCALING FORMULA
em WestminsterResearch - UK
Resumo:
A simple but effective technique to improve the performance of the Max-Log-MAP algorithm is to scale the extrinsic information exchanged between two MAP decoders. A comprehensive analysis of the selection of the scaling factors according to channel conditions and decoding iterations is presented in this paper. Choosing a constant scaling factor for all SNRs and iterations is compared with the best scaling factor selection for changing channel conditions and decoding iterations. It is observed that a constant scaling factor for all channel conditions and decoding iterations is the best solution and provides a 0.2-0.4 dB gain over the standard Max- Log-MAP algorithm. Therefore, a constant scaling factor should be chosen for the best compromise.
Resumo:
The iterative nature of turbo-decoding algorithms increases their complexity compare to conventional FEC decoding algorithms. Two iterative decoding algorithms, Soft-Output-Viterbi Algorithm (SOVA) and Maximum A posteriori Probability (MAP) Algorithm require complex decoding operations over several iteration cycles. So, for real-time implementation of turbo codes, reducing the decoder complexity while preserving bit-error-rate (BER) performance is an important design consideration. In this chapter, a modification to the Max-Log-MAP algorithm is presented. This modification is to scale the extrinsic information exchange between the constituent decoders. The remainder of this chapter is organized as follows: An overview of the turbo encoding and decoding processes, the MAP algorithm and its simplified versions the Log-MAP and Max-Log-MAP algorithms are presented in section 1. The extrinsic information scaling is introduced, simulation results are presented, and the performance of different methods to choose the best scaling factor is discussed in Section 2. Section 3 discusses trends and applications of turbo coding from the perspective of wireless applications.
Resumo:
The design of a decision-support prototype tool for managing flight delay costs in the pre-departure and airborne phases of a flight is described. The tool trades accelerated fuel burn and emissions charges against 'cost of time'. Costs for all major 'cost of time' components, by three cost scenarios, twelve aircraft types and by magnitude of delay are derived. Short-term opportunities for saving fuel and/or reducing environmental impacts are identified. A shift in ATM from managing delay minutes to delay cost is also supported.