2 resultados para OVARIECTOMY

em WestminsterResearch - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sex differences have been widely reported in neuroinflammatory disorders, focusing on the contributory role of estrogen. The microvascular endothelium of the brain is a critical component of the blood–brain barrier (BBB) and it is recognized as a major interface for communication between the periphery and the brain. As such, the cerebral capillary endothelium represents an important target for the peripheral estrogen neuroprotective functions, leading us to hypothesize that estrogen can limit BBB breakdown following the onset of peripheral inflammation. Comparison of male and female murine responses to peripheral LPS challenge revealed a short-term inflammation-induced deficit in BBB integrity in males that was not apparent in young females, but was notable in older, reproductively senescent females. Importantly, ovariectomy and hence estrogen loss recapitulated an aged phenotype in young females, which was reversible upon estradiol replacement. Using a well-established model of human cerebrovascular endothelial cells we investigated the effects of estradiol upon key barrier features, namely paracellular permeability, transendothelial electrical resistance, tight junction integrity and lymphocyte transmigration under basal and inflammatory conditions, modeled by treatment with TNFα and IFNγ. In all cases estradiol prevented inflammation-induced defects in barrier function, action mediated in large part through up-regulation of the central coordinator of tight junction integrity, annexin A1. The key role of this protein was then further confirmed in studies of human or murine annexin A1 genetic ablation models. Together, our data provide novel mechanisms for the protective effects of estrogen, and enhance our understanding of the beneficial role it plays in neurovascular/neuroimmune disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased osteoclast (OC) bone resorption and/or decreased osteoblast (OB) bone formation contribute to bone loss in osteoporosis and rheumatoid arthritis (RA). Findings of the basic and translational research presented in this thesis demonstrate a number of mechanisms by which cytokine-induced NF-κB activation controls bone resorption and formation: 1) Tumour necrosis factor-α (TNF) expands pool of OC precursors (OCPs) by promoting their proliferation through stimulation of the expression of macrophage colony stimulating factor (M-CSF) receptor, c-Fms, and switching M-CSF-induced resident (M2) to inflammatory (M1) macrophages with enhanced OC forming potential and increased production of inflammatory factors through induction of NF-κB RelB; 2) Similar to RANKL, TNF sequentially activates transcriptional factors NF-κB p50 and p52 followed by c-Fos and then NFATc1 to induce OC differentiation. However, TNF alone induces very limited OC differentiation. In contrast, it pre-activates OCPs to express cFos which cooperates with interleukin-1 (IL-1) produced by these OCPs in an autocrine mechanism by interacting with bone matrix to mediate the OC terminal differentiation and bone resorption from these pre-activated OCPs. 3) TNF-induced OC formation is independent of RANKL but it also induces NF-κB2 p100 to limit OC formation and bone resorption, and thus p100 deletion accelerates joint destruction and systemic bone loss in TNF-induced RA; 4) TNF receptor associated factor-3 (TRAF3) limits OC differentiation by negatively regulating non-canonical NF-κB activation and RANKL induces TRAF3 ubiquitination and lysosomal degradation to promote OC differentiation. Importantly, a lysosomal inhibitor that inhibits TRAF3 degradation prevents ovariectomy-induced bone loss; 5) RelB and Notch NICD bind RUNX2 to inhibit OB differentiation and RelB:p52 dimer association with NICD inhibit OB differentiation by enhancing the binding of RBPjκ to Hes1. These findings suggest that non-canonical NF- κB signaling could be targets to develop new therapies for RA or osteoporosis. For example 1) Agents that degrade TNF-induced RelB could block M1 macrophage differentiation to inhibit inflammation and joint destruction for the therapy of RA; 2)Agents that prevent p100 processing or TRAF3 degradation could inhibit bone resorption and also stimulate bone formation simultaneously for the therapy of osteoporosis.