6 resultados para Numerical Algorithms and Problems
em WestminsterResearch - UK
Resumo:
In this article we provide brief descriptions of three classes of schedulers: Operating Systems Process Schedulers, Cluster Systems, Jobs Schedulers and Big Data Schedulers. We describe their evolution from early adoptions to modern implementations, considering both the use and features of algorithms. In summary, we discuss differences between all presented classes of schedulers and discuss their chronological development. In conclusion, we highlight similarities in the focus of scheduling strategies design, applicable to both local and distributed systems.
Resumo:
Advocates of Big Data assert that we are in the midst of an epistemological revolution, promising the displacement of the modernist methodological hegemony of causal analysis and theory generation. It is alleged that the growing ‘deluge’ of digitally generated data, and the development of computational algorithms to analyse them, has enabled new inductive ways of accessing everyday relational interactions through their ‘datafication’. This paper critically engages with these discourses of Big Data and complexity, particularly as they operate in the discipline of International Relations, where it is alleged that Big Data approaches have the potential for developing self-governing societal capacities for resilience and adaptation through the real-time reflexive awareness and management of risks and problems as they arise. The epistemological and ontological assumptions underpinning Big Data are then analysed to suggest that critical and posthumanist approaches have come of age through these discourses, enabling process-based and relational understandings to be translated into policy and governance practices. The paper thus raises some questions for the development of critical approaches to new posthuman forms of governance and knowledge production.
Resumo:
This paper deals with and details the design and implementation of a low-power; hardware-efficient adaptive self-calibrating image rejection receiver based on blind-source-separation that alleviates the RF analog front-end impairments. Hybrid strength-reduced and re-scheduled data-flow, low-power implementation of the adaptive self-calibration algorithm is developed and its efficiency is demonstrated through simulation case studies. A behavioral and structural model is developed in Matlab as well as a low-level architectural design in VHDL providing valuable test benches for the performance measures undertaken on the detailed algorithms and structures.
Resumo:
Data registration refers to a series of techniques for matching or bringing similar objects or datasets together into alignment. These techniques enjoy widespread use in a diverse variety of applications, such as video coding, tracking, object and face detection and recognition, surveillance and satellite imaging, medical image analysis and structure from motion. Registration methods are as numerous as their manifold uses, from pixel level and block or feature based methods to Fourier domain methods. This book is focused on providing algorithms and image and video techniques for registration and quality performance metrics. The authors provide various assessment metrics for measuring registration quality alongside analyses of registration techniques, introducing and explaining both familiar and state–of–the–art registration methodologies used in a variety of targeted applications.