3 resultados para Non-uniform temperature distribution
em WestminsterResearch - UK
Resumo:
This paper describes a novel idea to identify the total number of red blood cells (RBCs) as well as their location in a Giemsa stained thin blood film image. This work is being undertaken as a part of developing an automated malaria parasite detection system by scanning a photograph of thin blood film in order to evaluate the parasitemia of the blood. Not only will this method eliminates the segmentation procedures that are normally used to segment the cells in the microscopic image, but also avoids any image pre-processing to deal with non uniform illumination prior to cell detection. The method utilizes basic knowledge on cell structure and brightness of the components due to Giemsa staining of the sample and detects and locates the RBCs in the image.
Resumo:
In this study, we propose a new semi-nonparametric (SNP) density model for describing the density of portfolio returns. This distribution, which we refer to as the multivariate moments expansion (MME), admits any non-Gaussian (multivariate) distribution as its basis because it is specified directly in terms of the basis density’s moments. To obtain the expansion of the Gaussian density, the MME is a reformulation of the multivariate Gram-Charlier (MGC), but the MME is much simpler and tractable than the MGC when positive transformations are used to produce well-defined densities. As an empirical application, we extend the dynamic conditional equicorrelation (DECO) model to an SNP framework using the MME. The resulting model is parameterized in a feasible manner to admit two-stage consistent estimation and it represents the DECO as well as the salient non-Gaussian features of portfolio return distributions. The in- and out-of-sample performance of a MME-DECO model of a portfolio of 10 assets demonstrate that it can be a useful tool for risk management purposes.
Resumo:
Uncertainty in decision-making for patients’ risk of re-admission arises due to non-uniform data and lack of knowledge in health system variables. The knowledge of the impact of risk factors will provide clinicians better decision-making and in reducing the number of patients admitted to the hospital. Traditional approaches are not capable to account for the uncertain nature of risk of hospital re-admissions. More problems arise due to large amount of uncertain information. Patients can be at high, medium or low risk of re-admission, and these strata have ill-defined boundaries. We believe that our model that adapts fuzzy regression method will start a novel approach to handle uncertain data, uncertain relationships between health system variables and the risk of re-admission. Because of nature of ill-defined boundaries of risk bands, this approach does allow the clinicians to target individuals at boundaries. Targeting individuals at boundaries and providing them proper care may provide some ability to move patients from high risk to low risk band. In developing this algorithm, we aimed to help potential users to assess the patients for various risk score thresholds and avoid readmission of high risk patients with proper interventions. A model for predicting patients at high risk of re-admission will enable interventions to be targeted before costs have been incurred and health status have deteriorated. A risk score cut off level would flag patients and result in net savings where intervention costs are much higher per patient. Preventing hospital re-admissions is important for patients, and our algorithm may also impact hospital income.