1 resultado para New York Stock Exchange.
em WestminsterResearch - UK
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (10)
- Archive of European Integration (1)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (9)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Bibloteca do Senado Federal do Brasil (4)
- Biodiversity Heritage Library, United States (34)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (60)
- Boston University Digital Common (4)
- Brock University, Canada (97)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CentAUR: Central Archive University of Reading - UK (15)
- Center for Jewish History Digital Collections (100)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- Cornell: DigitalCommons@ILR (3)
- CUNY Academic Works (56)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (61)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (47)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (137)
- Helda - Digital Repository of University of Helsinki (7)
- Memoria Académica - FaHCE, UNLP - Argentina (39)
- Ministerio de Cultura, Spain (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (104)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (12)
- Queensland University of Technology - ePrints Archive (14)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (39)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (1)
- Universidade Metodista de São Paulo (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (10)
- University of Connecticut - USA (2)
- University of Michigan (15)
- University of Southampton, United Kingdom (1)
- USA Library of Congress (2)
- WestminsterResearch - UK (1)
Resumo:
This paper provides an empirical study to assess the forecasting performance of a wide range of models for predicting volatility and VaR in the Madrid Stock Exchange. The models performance was measured by using different loss functions and criteria. The results show that FIAPARCH processes capture and forecast more accurately the dynamics of IBEX-35 returns volatility. It is also observed that assuming a heavy-tailed distribution does not improve models ability for predicting volatility. However, when the aim is forecasting VaR, we find evidence of that the Student’s t FIAPARCH outperforms the models it nests the lower the target quantile.