3 resultados para Neutrophil

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract AIMS: The aim of the present study was to investigate whether selective antagonism of the cysteine-X-cysteine chemokine receptor-2 (CXCR2) receptor has any adverse effects on the key innate effector functions of human neutrophils for defence against microbial pathogens. METHODS: In a double-blind, crossover study, 30 healthy volunteers were randomized to treatment with the CXCR2 antagonist AZD5069 (100 mg) or placebo, twice daily orally for 6 days. The peripheral blood neutrophil count was assessed at baseline, daily during treatment and in response to exercise challenge and subcutaneous injection of granulocyte-colony stimulating factor (G-CSF). Neutrophil function was evaluated by phagocytosis of Escherichia coli and by the oxidative burst response to E. coli. RESULTS: AZD5069 treatment reversibly reduced circulating neutrophil count from baseline by a mean [standard deviation (SD)] of -1.67 (0.67) ×10(9) l(-1) vs. 0.19 (0.78) ×10(9) l(-1) for placebo on day 2, returning to baseline by day 7 after the last dose. Despite low counts on day 4, a 10-min exercise challenge increased absolute blood neutrophil count, but the effect with AZD5069 was smaller and not sustained, compared with placebo treatment. Subcutaneous G-CSF on day 5 caused a substantial increase in blood neutrophil count in both placebo- and AZD5069-treated subjects. Superoxide anion production in E. coli-stimulated neutrophils and phagocytosis of E. coli were unaffected by AZD5069 (P = 0.375, P = 0.721, respectively vs. baseline, Day 4). AZD5069 was well tolerated. CONCLUSIONS: CXCR2 antagonism did not appear adversely to affect the mobilization of neutrophils from bone marrow into the peripheral circulation, phagocytosis or the oxidative burst response to bacterial pathogens. This supports the potential of CXCR2 antagonists as a treatment option for diseases in which neutrophils play a pathological role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusobacterium necrophorum is a causative agent of Lemierre’s syndrome (LS) in humans. LS is characterised by thrombophlebitis of the jugular vein and bacteraemia. Disseminated intravascular coagulation is also a documented symptom. F. necrophorum is a Gram-negative, anaerobic bacterium known to possess virulence genes such as a haemolysin, filamentous haemagglutinin and leukotoxin, which target host blood components. Ecotin is a serine protease inhibitor that has not previously been characterised in F. necrophorum, but in E.coli has been shown to have a potent anticoagulant effect. Next generation and Sanger sequencing were used to confirm the presence of the ecotin gene in the genomes of a collection of F. necrophorum clinical and reference strains. When translated, it was found to be a highly conserved protein made up of159 amino acids. Enzyme/substrate inhibition assays demonstrated that F. necrophorum ecotin inhibits human plasma kallikrein and human neutrophil elastase in a dose-dependent manner. Data will also be presented on the anticoagulant effects of ecotin during activated partial thromboplastin time, thrombin time and prothrombin time tests on human donor blood. The mechanisms for how this organism reaches the bloodstream and the significance of this serine protease inhibitor during F. necrophorum infections remain to be elucidated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusobacterium necrophorum, a Gram negative, anaerobic bacterium, is a common cause of acute pharyngitis and tonsillitis and a rare cause of more severe infections of the head and neck. At the beginning of the project, there was no available genome sequence for F. necrophorum. The aim of this project was to sequence the F. necrophorum genome and identify and study its putative virulence factors contained using in silico and in vitro analysis. Type strains JCM 3718 and JCM 3724,F. necrophorum subspecies necrophorum (Fnn) and funduliforme (Fnf), respectively, and strain ARU 01 (Fnf), isolated from a patient with LS, were commercially sequenced by Roche 454 GS-FLX+ next generation sequencing and assembled into contigs using Roche GS Assembler. Sequence data was annotated semi-automatically, using the xBASE pipeline, BLASTp and Pfam. The F. necrophorum genome was determined to be approximately 2.1 – 2.3 Mb in size, with an estimated 1,950 ORFs and includes genes for a leukotoxin, ecotin, haemolysin, haemagglutinin, haemin receptor, adhesin and type Vb and Vc secretion systems. The prevalence of the leukotoxin gene was investigated in strains JCM 3718, JCM 3724 and ARU 01, as well as a clinical collection of 25 Fnf strains, identified using biochemical and molecular tests. The leukotoxin operon was found to be universal within the strain collection by PCR. HL-60 cells subjected to aliquots of concentrated high molecular weight culture supernatant, predicted to contain the secreted leukotoxins of strains JCM 3718, JCM 3724 and ARU 01, were killed in a dose-dependent manner. The cytotoxic effect of the leukotoxin against human donor white blood cells was also tested to validate the HL-60 assay. The differences in the results between the two assays were not statistically significant. Ecotin, a serine protease inhibitor, was found to be present in 100 % of the strain collection and had a highly conserved sequence with primary and secondary binding sites exposed on opposing sides of the protein. During enzyme inhibition studies, a purified recombinant F. necrophorum ecotin protein inhibited human neutrophil elastase, a protease that degrades bacteria at inflammation sites, and human plasma kallikrein, a component of the host clotting cascade. The recombinant ecotin also prolonged human plasma clotting times by up to 7-fold for the extrinsic pathway, and up to 40-fold for the intrinsic pathway. The genome sequence data provides important information about F. necrophorum type strains and enables comparative study between strains and subspecies. Results from the leukotoxin and ecotin assays can be used to build up an understanding of how the organism behaves during infection.