1 resultado para Naive Bayes
em WestminsterResearch - UK
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (25)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (5)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (38)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (124)
- Boston University Digital Common (4)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (42)
- CentAUR: Central Archive University of Reading - UK (41)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (22)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (6)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (16)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (14)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (11)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (35)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (5)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (19)
- National Center for Biotechnology Information - NCBI (37)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (51)
- Queensland University of Technology - ePrints Archive (96)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (13)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (85)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (28)
- Universidade Complutense de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (18)
- Université de Montréal, Canada (14)
- University of Connecticut - USA (2)
- University of Michigan (4)
- University of Queensland eSpace - Australia (10)
- University of Southampton, United Kingdom (3)
- WestminsterResearch - UK (1)
Resumo:
The objective of this study was to develop, test and benchmark a framework and a predictive risk model for hospital emergency readmission within 12 months. We performed the development using routinely collected Hospital Episode Statistics data covering inpatient hospital admissions in England. Three different timeframes were used for training, testing and benchmarking: 1999 to 2004, 2000 to 2005 and 2004 to 2009 financial years. Each timeframe includes 20% of all inpatients admitted within the trigger year. The comparisons were made using positive predictive value, sensitivity and specificity for different risk cut-offs, risk bands and top risk segments, together with the receiver operating characteristic curve. The constructed Bayes Point Machine using this feature selection framework produces a risk probability for each admitted patient, and it was validated for different timeframes, sub-populations and cut-off points. At risk cut-off of 50%, the positive predictive value was 69.3% to 73.7%, the specificity was 88.0% to 88.9% and sensitivity was 44.5% to 46.3% across different timeframes. Also, the area under the receiver operating characteristic curve was 73.0% to 74.3%. The developed framework and model performed considerably better than existing modelling approaches with high precision and moderate sensitivity.