4 resultados para NEUTROPHIL HOMEOSTASIS
em WestminsterResearch - UK
Resumo:
Abstract AIMS: The aim of the present study was to investigate whether selective antagonism of the cysteine-X-cysteine chemokine receptor-2 (CXCR2) receptor has any adverse effects on the key innate effector functions of human neutrophils for defence against microbial pathogens. METHODS: In a double-blind, crossover study, 30 healthy volunteers were randomized to treatment with the CXCR2 antagonist AZD5069 (100 mg) or placebo, twice daily orally for 6 days. The peripheral blood neutrophil count was assessed at baseline, daily during treatment and in response to exercise challenge and subcutaneous injection of granulocyte-colony stimulating factor (G-CSF). Neutrophil function was evaluated by phagocytosis of Escherichia coli and by the oxidative burst response to E. coli. RESULTS: AZD5069 treatment reversibly reduced circulating neutrophil count from baseline by a mean [standard deviation (SD)] of -1.67 (0.67) ×10(9) l(-1) vs. 0.19 (0.78) ×10(9) l(-1) for placebo on day 2, returning to baseline by day 7 after the last dose. Despite low counts on day 4, a 10-min exercise challenge increased absolute blood neutrophil count, but the effect with AZD5069 was smaller and not sustained, compared with placebo treatment. Subcutaneous G-CSF on day 5 caused a substantial increase in blood neutrophil count in both placebo- and AZD5069-treated subjects. Superoxide anion production in E. coli-stimulated neutrophils and phagocytosis of E. coli were unaffected by AZD5069 (P = 0.375, P = 0.721, respectively vs. baseline, Day 4). AZD5069 was well tolerated. CONCLUSIONS: CXCR2 antagonism did not appear adversely to affect the mobilization of neutrophils from bone marrow into the peripheral circulation, phagocytosis or the oxidative burst response to bacterial pathogens. This supports the potential of CXCR2 antagonists as a treatment option for diseases in which neutrophils play a pathological role.
Resumo:
Fusobacterium necrophorum is a causative agent of Lemierre’s syndrome (LS) in humans. LS is characterised by thrombophlebitis of the jugular vein and bacteraemia. Disseminated intravascular coagulation is also a documented symptom. F. necrophorum is a Gram-negative, anaerobic bacterium known to possess virulence genes such as a haemolysin, filamentous haemagglutinin and leukotoxin, which target host blood components. Ecotin is a serine protease inhibitor that has not previously been characterised in F. necrophorum, but in E.coli has been shown to have a potent anticoagulant effect. Next generation and Sanger sequencing were used to confirm the presence of the ecotin gene in the genomes of a collection of F. necrophorum clinical and reference strains. When translated, it was found to be a highly conserved protein made up of159 amino acids. Enzyme/substrate inhibition assays demonstrated that F. necrophorum ecotin inhibits human plasma kallikrein and human neutrophil elastase in a dose-dependent manner. Data will also be presented on the anticoagulant effects of ecotin during activated partial thromboplastin time, thrombin time and prothrombin time tests on human donor blood. The mechanisms for how this organism reaches the bloodstream and the significance of this serine protease inhibitor during F. necrophorum infections remain to be elucidated
Resumo:
Background: Muscle atrophy is seen ~ 25 % of patients with cardiopulmonary disorders, such as chronic obstructive pulmonary disorder and chronic heart failure. Multiple hypotheses exist for this loss, including inactivity, inflammation, malnutrition and hypoxia. Healthy individuals exposed to chronic hypobaric hypoxia also show wasting, suggesting hypoxia alone is sufficient to induce atrophy. Myostatin regulates muscle mass and may underlie hypoxic-induced atrophy. Our previous work suggests a decrease in plasma myostatin and increase in muscle myostatin following 10 hours of exposure to 12 % O2. Aims: To establish the effect of hypoxic dose on plasma myostatin concentration. Concentration of plasma myostatin following two doses of normobaric hypoxia (10.7 % and 12.3 % O2) in a randomised, single-blinded crossover design (n = 8 lowlanders, n = 1 Sherpa), with plasma collected pre (0 hours), post (2 hours) and 2 hours following (4 hours) exposure. Results: An effect of time was noted, plasma myostatin decreased at 4 hours but not 2 hours relative to 0 hours (p = 0.01; 0 hours = 3.26 [0.408] ng.mL-1, 2 hours = 3.33, [0.426] ng.mL-1, 4 hours = 2.92, [0.342] ng.mL-1). No difference in plasma myostatin response was seen between hypoxic conditions (10.7 % vs. 12.3 % O2). Myostatin reduction in the Sherpa case study was similar to the lowlander cohort. Conclusions: Decreased myostatin peptide expression suggests hypoxia in isolation is sufficient to challenge muscle homeostasis, independent of confounding factors seen in chronic cardiopulmonary disorders, in a manner consistent with our previous work. Decreased myostatin peptide may represent flux towards peripheral muscle, or a reduction to protect muscle mass. Chronic adaption to hypoxia does not appear to protect against this response, however larger cohorts are needed to confirm this. Future work will examine tissue changes in parallel with systemic effects.
Resumo:
Signal transducers and activators of transcription 5 (STAT5a and STAT5b) are highly homologous proteins that are encoded by 2 separate genes and are activated by Janus-activated kinases (JAK) downstream of cytokine receptors. STAT5 proteins are activated by a wide variety of hematopoietic and nonhematopoietic cytokines and growth factors, all of which use the JAK-STAT signalling pathway as their main mode of signal transduction. STAT5 proteins critically regulate vital cellular functions such as proliferation, differentiation, and survival. The physiological importance of STAT5 proteins is underscored by the plethora of primary human tumors that have aberrant constitutive activation of these proteins, which significantly contributes to tumor cell survival and malignant progression of disease. STAT5 plays an important role in the maintenance of normal immune function and homeostasis, both of which are regulated by specific members of IL-2 family of cytokines, which share a common gamma chain (γc) in their receptor complex. STAT5 critically mediates the biological actions of members of the γc family of cytokines in the immune system. Essentially, STAT5 plays a critical role in the function and development of Tregs, and consistently activated STAT5 is associated with a suppression in antitumor immunity and an increase in proliferation, invasion, and survival of tumor cells. Thus, therapeutic targeting of STAT5 is promising in cancer.