2 resultados para NANOCOMPOSITE MEMBRANE
em WestminsterResearch - UK
Resumo:
Plasma membrane-derived vesicles (PMVs) or microparticles are vesicles (0.1–1 μm in diameter) released from the plasma membrane of all blood cell types under a variety of biochemical and pathological conditions. PMVs contain cytoskeletal elements and some surface markers from the parent cell but lack a nucleus and are unable to synthesise macromolecules. They are also defined on the basis that in most cases PMVs express varying amounts of the cytosolic leaflet lipid phosphatidylserine, which is externalised during activation on their surface. This marks the PMV as a biologically distinct entity from that of its parent cell, despite containing surface markers from the original cell, and also explains its role in events such as phagocytosis and thrombosis. There is currently a large amount of variation between investigators with regard to the pre-analytical steps employed in isolating red cell PMVs or RPMVs (which are slightly smaller than most PMVs), with key differences being centrifugation and sample storage conditions, which often leads to result variability. Unfortunately, standardization of preparation and detection methods has not yet been achieved. This review highlights and critically discusses the variables contributing to differences in results obtained by investigators, bringing to light numerous studies of which RPMVs have been analysed but have not yet been the subject of a review.
Resumo:
A modified tri-axial electrospinning process was developed for the generation of a new type of pH-sensitive polymer/lipid nanocomposite. The systems produced are able to promote both dissolution and permeation of a model poorly water-soluble drug. First, we show that it is possible to run a tri-axial process with only one of the three fluids being electrospinnable. Using an electrospinnable middle fluid of Eudragit S100 (ES100) with pure ethanol as the outer solvent and an unspinnable lecithin-diclofenac sodium (PL–DS) core solution, nanofibers with linear morphology and clear core/shell structures can be fabricated continuously and smoothly. X-ray diffraction proved that these nanofibers are structural nanocomposites with the drug present in an amorphous state. In vitro dissolution tests demonstrated that the formulations could preclude release in acidic conditions, and that the drug was released from the fibers in two successive steps at neutral pH. The first step is the dissolution of the shell ES100 and the conversion of the core PL–DS into sub-micron sized particles. This frees some DS into solution, and later the remaining DS is gradually released from the PL–DS particles through diffusion. Ex vivo permeation results showed that the composite nanofibers give a more than twofold uplift in the amount of DS passing through the colonic membrane as compared to pure DS; 74% of the transmitted drug was in the form of PL–DS particles. The new tri-axial electrospinning process developed in this work provides a platform to fabricate structural nanomaterials, and the core–shell polymer-PL nanocomposites we have produced have significant potential applications for oral colon-targeted drug delivery.