2 resultados para Muscle atrophy
em WestminsterResearch - UK
Resumo:
Background: Muscle atrophy is seen ~ 25 % of patients with cardiopulmonary disorders, such as chronic obstructive pulmonary disorder and chronic heart failure. Multiple hypotheses exist for this loss, including inactivity, inflammation, malnutrition and hypoxia. Healthy individuals exposed to chronic hypobaric hypoxia also show wasting, suggesting hypoxia alone is sufficient to induce atrophy. Myostatin regulates muscle mass and may underlie hypoxic-induced atrophy. Our previous work suggests a decrease in plasma myostatin and increase in muscle myostatin following 10 hours of exposure to 12 % O2. Aims: To establish the effect of hypoxic dose on plasma myostatin concentration. Concentration of plasma myostatin following two doses of normobaric hypoxia (10.7 % and 12.3 % O2) in a randomised, single-blinded crossover design (n = 8 lowlanders, n = 1 Sherpa), with plasma collected pre (0 hours), post (2 hours) and 2 hours following (4 hours) exposure. Results: An effect of time was noted, plasma myostatin decreased at 4 hours but not 2 hours relative to 0 hours (p = 0.01; 0 hours = 3.26 [0.408] ng.mL-1, 2 hours = 3.33, [0.426] ng.mL-1, 4 hours = 2.92, [0.342] ng.mL-1). No difference in plasma myostatin response was seen between hypoxic conditions (10.7 % vs. 12.3 % O2). Myostatin reduction in the Sherpa case study was similar to the lowlander cohort. Conclusions: Decreased myostatin peptide expression suggests hypoxia in isolation is sufficient to challenge muscle homeostasis, independent of confounding factors seen in chronic cardiopulmonary disorders, in a manner consistent with our previous work. Decreased myostatin peptide may represent flux towards peripheral muscle, or a reduction to protect muscle mass. Chronic adaption to hypoxia does not appear to protect against this response, however larger cohorts are needed to confirm this. Future work will examine tissue changes in parallel with systemic effects.
Resumo:
When exposed to chronic hypoxia by pathophysiological or environmental causes humans show muscle atrophy, challenging homeostasis and increasing mortality rate. Chronic hypoxia also presents with elevated myostatin peptide, a negative regulator of muscle size. This work induced acute hypoxia in healthy individuals; hypothesizing hypoxia would increase myostatin expression in both muscle and plasma in a concentration- and time-dependent manner. Hypoxia (1 % O2) reduced C2C12 myoblast migration and myotube size in vitro. Myotube atrophy was time-dependent, longer exposures showed greater atrophy. Intracellular myostatin peptide was decreased at every time point measured. Myostatin and downstream signalling pathways in muscle showed a high degree of percentage similarity between mouse and human, when amino acid sequences were directly compared. Healthy males (N = 8) were exposed to 20.9 % O2 or 11.9 % O2 for 2 hours. Following hypoxic exposure myostatin peptide was reduced in muscle but not plasma, relative to control conditions. A second cohort (N = 8) was exposed to 12.5 % O2 for 10 hours. Plasma myostatin was decreased following hypoxia, muscle myostatin trended towards increasing. A third cohort (N = 9; n = 8 lowlander, n = 1 Sherpa) was exposed to 10.7 % or 12.3 % O2 for 2 hours. Plasma myostatin was reduced at both concentrations with no difference between concentrations noted. In response to chronic hypoxia, individuals lose muscle mass. Counter to the hypothesis of an increase in myostatin in both muscle and plasma, here a consistent decrease in plasma myostatin following acute hypoxia is seen. Muscle myostatin shows a variable response, with decreasing intracellular expression seen following a 2 hour hypoxic exposure, and trends towards an increase following 10 hours of hypoxia. Decreases in plasma and muscle myostatin may represent myostatin’s movement towards peripheral compartments in these acute timeframes. Hypoxia alone is capable of altering myostatin in healthy individuals; the effects of hypoxia on myostatin appear to differ between the acute timeframes examined here and chronic exposures in environmental or disease models.