4 resultados para Mortality and race
em WestminsterResearch - UK
Resumo:
In proposing theories of how we should design and specify networks of processes it is necessary to show that the semantics of any language we use to write down the intended behaviours of a system has several qualities. First in that the meaning of what is written on the page reflects the intention of the designer; second that there are no unexpected behaviours that might arise in a specified system that are hidden from the unsuspecting specifier; and third that the intention for the design of the behaviour of a network of processes can be communicated clearly and intuitively to others. In order to achieve this we have developed a variant of CSP, called CSPt, designed to solve the problems of termination of parallel processes present in the original formulation of CSP. In CSPt we introduced three parallel operators, each with a different kind of termination semantics, which we call synchronous, asynchronous and race. These operators provide specifiers with an expressive and flexible tool kit to define the intended behaviour of a system in such a way that unexpected or unwanted behaviours are guaranteed not to take place. In this paper we extend out analysis of CSPt and introduce the notion of an alphabet diagram that illustrates the different categories of events that can arise in the parallel composition of processes. These alphabet diagrams are then used to analyse networks of three processes in parallel with the aim of identifying sufficient constraints to ensure associativity of their parallel composition. Having achieved this we then proceed to prove associativity laws for the three parallel operators of CSPt. Next, we illustrate how to design and construct a network of three processes that satisfy the associativity law, using the associativity theorem and alphabet diagrams. Finally, we outline how this could be achieved for more general networks of processes.
Resumo:
Background: Parenteral nutrition is central to the care of very immature infants. Current international recommendations favor higher amino acid intakes and fish oil–containing lipid emulsions. Objective: The aim of this trial was to compare 1) the effects of high [immediate recommended daily intake (Imm-RDI)] and low [incremental introduction of amino acids (Inc-AAs)] parenteral amino acid delivery within 24 h of birth on body composition and 2) the effect of a multicomponent lipid emulsion containing 30% soybean oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (SMOF) with that of soybean oil (SO)-based lipid emulsion on intrahepatocellular lipid (IHCL) content. Design: We conducted a 2-by-2 factorial, double-blind, multicenter randomized controlled trial. Results: We randomly assigned 168 infants born at ,31 wk of gestation. We evaluated outcomes at term in 133 infants. There were no significant differences between Imm-RDI and Inc-AA groups for nonadipose mass [adjusted mean difference: 1.0 g (95% CI: 2108, 111 g; P = 0.98)] or between SMOF and SO groups for IHCL [adjusted mean SMOF:SO ratio: 1.1 (95% CI: 0.8, 1.6; P = 0.58]. SMOF does not affect IHCL content. There was a significant interaction (P = 0.05) between the 2 interventions for nonadipose mass. There were no significant interactions between group differences for either primary outcome measure after adjusting for additional confounders. Imm-RDI infants were more likely than Inc-AA infants to have blood urea nitrogen concentrations .7 mmol/L or .10 mmol/L, respectively (75% compared with 49%, P , 0.01; 49% compared with 18%, P , 0.01). Head circumference at term was smaller in the Imm-RDI group [mean difference: 20.8 cm (95% CI: 21.5, 20.1 cm; P = 0.02)]. There were no significant differences in any prespecified secondary outcomes, including adiposity, liver function tests, incidence of conjugated hyperbilirubinemia, weight, length, mortality, and brain volumes. Conclusion: Imm-RDI of parenteral amino acids does not benefit body composition or growth to term and may be harmful. This trial was registered at www.isrctn.com as ISRCTN29665319 and at eudract.ema.europa.eu as EudraCT 2009-016731-34.