2 resultados para Modified reflected normal loss function

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transducers and activators of transcription 5 (STAT5a and STAT5b) are highly homologous proteins that are encoded by 2 separate genes and are activated by Janus-activated kinases (JAK) downstream of cytokine receptors. STAT5 proteins are activated by a wide variety of hematopoietic and nonhematopoietic cytokines and growth factors, all of which use the JAK-STAT signalling pathway as their main mode of signal transduction. STAT5 proteins critically regulate vital cellular functions such as proliferation, differentiation, and survival. The physiological importance of STAT5 proteins is underscored by the plethora of primary human tumors that have aberrant constitutive activation of these proteins, which significantly contributes to tumor cell survival and malignant progression of disease. STAT5 plays an important role in the maintenance of normal immune function and homeostasis, both of which are regulated by specific members of IL-2 family of cytokines, which share a common gamma chain (γc) in their receptor complex. STAT5 critically mediates the biological actions of members of the γc family of cytokines in the immune system. Essentially, STAT5 plays a critical role in the function and development of Tregs, and consistently activated STAT5 is associated with a suppression in antitumor immunity and an increase in proliferation, invasion, and survival of tumor cells. Thus, therapeutic targeting of STAT5 is promising in cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To provide a detailed phenotype/genotype characterization of Bietti crystalline dystrophy (BCD). DESIGN: Observational case series. PARTICIPANTS: Twenty patients from 17 families recruited from a multiethnic British population. METHODS: Patients underwent color fundus photography, near-infrared (NIR) imaging, fundus autofluorescence (FAF) imaging, spectral domain optical coherence tomography (SD-OCT), and electroretinogram (ERG) assessment. The gene CYP4V2 was sequenced. MAIN OUTCOME MEASURES: Clinical, imaging, electrophysiologic, and molecular genetics findings. RESULTS: Patients ranged in age from 19 to 72 years (median, 40 years), with a visual acuity of 6/5 to perception of light (median, 6/12). There was wide intrafamilial and interfamilial variability in clinical severity. The FAF imaging showed well-defined areas of retinal pigment epithelium (RPE) loss that corresponded on SD-OCT to well-demarcated areas of outer retinal atrophy. Retinal crystals were not evident on FAF imaging and were best visualized with NIR imaging. Spectral domain OCT showed them to be principally located on or in the RPE/Bruch's membrane complex. Disappearance of the crystals, revealed by serial recording, was associated with severe disruption and thinning of the RPE/Bruch's membrane complex. Cases with extensive RPE degeneration (N = 5) had ERGs consistent with generalized rod and cone dysfunction, but those with more focal RPE atrophy showed amplitude reduction without delay (N = 3), consistent with restricted loss of function, or that was normal (N = 2). Likely disease-causing variants were identified in 34 chromosomes from 17 families. Seven were novel, including p.Met66Arg, found in all 11 patients from 8 families of South Asian descent. This mutation appears to be associated with earlier onset (median age, 30 years) compared with other substitutions (median age, 41 years). Deletions of exon 7 were associated with more severe disease. CONCLUSIONS: The phenotype is highly variable. Several novel variants are reported, including a highly prevalent substitution in patients of South Asian descent that is associated with earlier-onset disease. Autofluorescence showed sharply demarcated areas of RPE loss that coincided with abrupt edges of outer retinal atrophy on SD-OCT; crystals were generally situated on or in the RPE/Bruch's complex but could disappear over time with associated RPE disruption. These results support a role for the RPE in disease pathogenesis.