3 resultados para Middleton, Thomas, -1627--Criticism and interpretation.

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To describe (1) the relationship between nutrition and the preterm-at-term infant phenotype, (2) phenotypic differences between preterm-at-term infants and healthy term born infants and (3) relationships between somatic and brain MRI outcomes. Design: Prospective observational study. Setting: UK tertiary neonatal unit. Participants: Preterm infants (<32 weeks gestation) (n=22) and healthy term infants (n=39) Main outcome measures: Preterm nutrient intake; total and regional adipose tissue (AT) depot volumes; brain volume and proximal cerebral arterial vessel tortuosity (CAVT) in preterm infants and in term infants. Results: Preterm nutrition was deficient in protein and high in carbohydrate and fat. Preterm nutrition was not related to AT volumes, brain volume or proximal CAVT score; a positive association was noted between human milk intake and proximal CAVT score (r=0.44, p=0.05). In comparison to term infants, preterm infants had increased total adiposity, comparable brain volumes and reduced proximal CAVT scores. There was a significant negative correlation between deep subcutaneous abdominal AT volume and brain volume in preterm infants (r=−0.58, p=0.01). Conclusions: Though there are significant phenotypic differences between preterm infants at term and term infants, preterm macronutrient intake does not appear to be a determinant. Our preliminary data suggest that (1) human milk may exert a beneficial effect on cerebral arterial vessel tortuosity and (2) there is a negative correlation between adiposity and brain volume in preterm infants at term. Further work is warranted to see if our findings can be replicated and to understand the causal mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactase persistence, the ability to digest the milk sugar lactose in adulthood, is highly associated with a T allele situated 13,910 bp upstream from the actual lactase gene in Europeans. The frequency of this allele rose rapidly in Europe after transition from hunter–gatherer to agriculturalist lifestyles and the introduction of milkable domestic species from Anatolia some 8000 years ago. Here we first introduce the archaeological and historic background of early farming life in Europe, then summarize what is known of the physiological and genetic mechanisms of lactase persistence. Finally, we compile the evidence for a co-evolutionary process between dairying culture and lactase persistence. We describe the different hypotheses on how this allele spread over Europe and the main evolutionary forces shaping this process. We also summarize three different computer simulation approaches, which offer a means of developing a coherent and integrated understanding of the process of spread of lactase persistence and dairying.