9 resultados para Microbiota bucal

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: The aim of this study was to evaluate the impact of the administration of microencapsulated Lactobacillus plantarum CRL 1815 with two combinations of microbially derived polysaccharides, xanthan : gellan gum (1%:0·75%) and jamilan : gellan gum (1%:1%), on the rat faecal microbiota. METHODS AND RESULTS: A 10-day feeding study was performed for each polymer combination in groups of 16 rats fed either with placebo capsules, free or encapsulated Lact. plantarum or water. The composition of the faecal microbiota was analysed by fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis. Degradation of placebo capsules was detected, with increased levels of polysaccharide-degrading bacteria. Xanthan : gellan gum capsules were shown to reduce the Bifidobacterium population and increase the Clostridium histolyticum group levels, but not jamilan : gellan gum capsules. Only after administration of jamilan : gellan gum-probiotic capsules was detected a significant increase in Lactobacillus-Enterococcus group levels compared to controls (capsules and probiotic) as well as two bands were identified as Lact. plantarum in two profiles of ileum samples. CONCLUSIONS: Exopolysaccharides constitute an interesting approach for colon-targeted delivery of probiotics, where jamilan : gellan gum capsules present better biocompatibility and promising results as a probiotic carrier. SIGNIFICANCE AND IMPACT OF STUDY: This study introduces and highlights the importance of biological compatibility in the encapsulating material election, as they can modulate the gut microbiota by themselves, and the use of bacterial exopolysaccharides as a powerful source of new targeted-delivery coating material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary sources of methylamines such as choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), phosphatidylcholine (PC) and carnitine are present in a number of foodstuffs, including meat, fish, nuts and eggs. It is recognized that the gut microbiota is able to convert choline to TMA in a fermentation-like process. Similarly, PC and carnitine are converted to TMA by the gut microbiota. It has been suggested that TMAO is subject to ‘metabolic retroversion’ in the gut (i.e. it is reduced to TMA by the gut microbiota, with this TMA being oxidized to produce TMAO in the liver). Sixty-six strains of human faecal and caecal bacteria were screened on solid and liquid media for their ability to utilize trimethylamine N-oxide (TMAO), with metabolites in spent media profiled by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Enterobacteriaceae produced mostly TMA from TMAO, with caecal/small intestinal isolates of Escherichia coli producing more TMA than their faecal counterparts. Lactic acid bacteria (enterococci, streptococci, bifidobacteria) produced increased amounts of lactate when grown in the presence of TMAO, but did not produce large amounts of TMA from TMAO. The presence of TMAO in media increased the growth rate of Enterobacteriaceae; while it did not affect the growth rate of lactic acid bacteria, TMAO increased the biomass of these bacteria. The positive influence of TMAO on Enterobacteriaceae was confirmed in anaerobic, stirred, pH-controlled batch culture fermentation systems inoculated with human faeces, where this was the only bacterial population whose growth was significantly stimulated by the presence of TMAO in the medium. We hypothesize that dietary TMAO is used as an alternative electron acceptor by the gut microbiota in the small intestine/proximal colon, and contributes to microbial population dynamics upon its utilization and retroversion to TMA, prior to absorption and secondary conversion to TMAO by hepatic flavin-containing monooxygenases. Our findings support the idea that oral TMAO supplementation is a physiologically-stable microbiota-mediated strategy to deliver TMA at the gut barrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased intake of dietary carbohydrate that is fermented in the colon by the microbiota has been reported to decrease body weight, although the mechanism remains unclear. Here we use in vivo11C-acetate and PET-CT scanning to show that colonic acetate crosses the blood–brain barrier and is taken up by the brain. Intraperitoneal acetate results in appetite suppression and hypothalamic neuronal activation patterning. We also show that acetate administration is associated with activation of acetyl-CoA carboxylase and changes in the expression profiles of regulatory neuropeptides that favour appetite suppression. Furthermore, we demonstrate through 13C high-resolution magic-angle-spinning that 13C acetate from fermentation of 13C-labelled carbohydrate in the colon increases hypothalamic 13C acetate above baseline levels. Hypothalamic 13C acetate regionally increases the 13C labelling of the glutamate–glutamine and GABA neuroglial cycles, with hypothalamic 13C lactate reaching higher levels than the ‘remaining brain’. These observations suggest that acetate has a direct role in central appetite regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Individuals with obesity and type 2 diabetes differ from lean and healthy individuals in their abundance of certain gut microbial species and microbial gene richness. Abundance of Akkermansia muciniphila, a mucin-degrading bacterium, has been inversely associated with bodyfat mass and glucose intolerance in mice, but more evidence is needed in humans. The impact of diet and weight loss on this bacterial species is unknown. Our objective was to evaluate the association between fecal A. muciniphila abundance, fecal microbiome gene richness, diet, host characteristics, and their changes after calorie restriction (CR). Design: The intervention consisted of a 6-week CR period followed by a 6-week weight stabilization (WS) diet in overweight and obese adults (N=49, including 41 women). Fecal A. muciniphila abundance, fecal microbial gene richness, diet and bioclinical parameters were measured at baseline and after CR and WS. Results: At baseline A. muciniphila was inversely related to fasting glucose, waist-to-hip ratio, and subcutaneous adipocyte diameter. Subjects with higher gene richness and A. muciniphila abundance exhibited the healthiest metabolic status, particularly in fasting plasma glucose, plasma triglycerides and body fat distribution. Individuals with higher baseline A. muciniphila displayed greater improvement in insulin sensitivity markers and other clinical parameters after CR. A. muciniphila was associated with microbial species known to be related to health. Conclusion: A. muciniphila is associated with a healthier metabolic status and better clinicaloutcomes after CR in overweight/obese adults, however the interaction between gut microbiota ecology and A. muciniphila has to be taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed an in-house pipeline for the processing and analyses of sequence data generated during Illumina technology-based metagenomic studies of the human gut microbiota. Each component of the pipeline has been selected following comparative analysis of available tools; however, the modular nature of software facilitates replacement of any individual component with an alternative should a better tool become available in due course. The pipeline consists of quality analysis and trimming followed by taxonomic filtering of sequence data allowing reads associated with samples to be binned according to whether they represent human, prokaryotic (bacterial/archaeal), viral, parasite, fungal or plant DNA. Viral, parasite, fungal and plant DNA can be assigned to species level on a presence/absence basis, allowing – for example – identification of dietary intake of plant-based foodstuffs and their derivatives. Prokaryotic DNA is subject to taxonomic and functional analyses, with assignment to taxonomic hierarchies (kingdom, class, order, family, genus, species, strain/subspecies) and abundance determination. After de novo assembly of sequence reads, genes within samples are predicted and used to build a non-redundant catalogue of genes. From this catalogue, per-sample gene abundance can be determined after normalization of data based on gene length. Functional annotation of genes is achieved through mapping of gene clusters against KEGG proteins, and InterProScan. The pipeline is undergoing validation using the human faecal metagenomic data of Qin et al. (2014, Nature 513, 59–64). Outputs from the pipeline allow development of tools for the integration of metagenomic and metabolomic data, moving metagenomic studies beyond determination of gene richness and representation towards microbial-metabolite mapping. There is scope to improve the outputs from viral, parasite, fungal and plant DNA analyses, depending on the depth of sequencing associated with samples. The pipeline can easily be adapted for the analyses of environmental and non-human animal samples, and for use with data generated via non-Illumina sequencing platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human gut microbiome is known to be associated with various human disorders, but a major challenge is to go beyond association studies and elucidate causalities. Mathematical modeling of the human gut microbiome at a genome scale is a useful tool to decipher microbe-microbe, diet-microbe and microbe-host interactions. Here, we describe the CASINO (Community And Systems-level INteractive Optimization) toolbox, a comprehensive computational platform for analysis of microbial communities through metabolic modeling. We first validated the toolbox by simulating and testing the performance of single bacteria and whole communities in vitro. Focusing on metabolic interactions between the diet, gut microbiota, and host metabolism, we demonstrated the predictive power of the toolbox in a diet-intervention study of 45 obese and overweight individuals and validated our predictions by fecal and blood metabolomics data. Thus, modeling could quantitatively describe altered fecal and serum amino acid levels in response to diet intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. DESIGN: To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. RESULTS: Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. CONCLUSIONS: These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetate is a short chain fatty acid produced as a result of fermentation of ingested fibers by the gut microbiota. While it has been shown to reduce cell proliferation in some cancer cell lines1,2, more recent studies on liver3 and brain4 tumours suggest that acetate may actually promote tumour growth. Acetate in the cell is normally converted into acetyl-coA by two enzymes and metabolized; mitochondrial (ACSS1) and cytosolic (ACSS2) acetyl-coA synthetase. In the mitochondria acetyl-coA is utilized in the TCA cycle. In the cytosol it is utilized in lipid synthesis. In this study, the effect of acetate treatment on the growth of HT29 colon cancer cell line and its mechanism of action was assessed. HT29 human colorectal adenocarcinoma cells were treated with 10mM NaAc and cell viability, cellular bioenergetics and gene expression were investigated. Cell viability was assessed 24 hours after treatment using an MTT assay (Sigma, UK, n=8). Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was measured by XFe Analyzer (Seahorse Bioscience, USA). After a baseline reading cells were treated and OCR and ECAR measurements were observed for 18 hours (n=4). Total mRNA was isolated 24 hours after treatment using RNeasy kit (Qiagen, USA). Quantitative PCR reactions were performed using Taqman gene expression assays and Taqman Universal PCR Master Mix (ThermoFisher Scientific, UK) on Applied Biosystems 7500 Fast Real-Time PCR System (Life Technologies, USA) and analysed using ΔΔCt method (n=3). Acetate treatment led to a significant reduction in cell viability (15.9%, Figure 1). OCR, an indicator of oxidative phosphorylation, was significantly increased (p<0.0001) while ECAR, an indicator of glycolysis, was significantly reduced (p<0.0001, Figure 2). Gene expression of ACSS1 was increased by 1.7 fold of control (p=0.07) and ACSS2 expression was reduced to 0.6 fold of control (p=0.06, Figure 3). In conclusion, in colon cancer cells acetate supplementation induces cell death and increases oxidative capacity. These changes together with the trending decrease in ACSS2 expression suggest suppression of lipid synthesis pathways. We hypothesize that the reduced tumor growth by acetate is a consequence of the suppression of ACSS2 and lipid synthesis, both effects reported previously to reduce tumor growth3–5. These effects clearly warrant further investigation.