2 resultados para Microbial biomas
em WestminsterResearch - UK
Resumo:
Biocathodes may be a suitable replacement of platinum in microbial fuel cells (MFCs) if the cost of MFCs is to be reduced. However, the use of enzymes as bio-cathodes is fraught with loss of activity as time progresses. A possible cause of this loss in activity might be pH increase in the cathode as pH gradients in MFCs are well known. This pH increase is however, accompanied by simultaneous increase in salinity; therefore salinity may be a confounding variable. This study investigated various ways of mitigating pH changes in the cathode of MFCs and their effect on laccase activity and decolourisation of a model azo dye Acid orange 7 in the anode chamber. Experiments were run with catholyte pH automatically controlled via feedback control or by using acetate buffers (pH 4.5) of various strength (100 mM and 200 mM), with CMI7000 as the cation exchange membrane. A comparison was also made between use of CMI7000 and Nafion 117 as the transport properties of cations for both membranes (hence their potential effects on pH changes in the cathode) are different.
Resumo:
Bioelectrochemical systems could have potential for bioremediation of contaminants either in situ or ex situ. The treatment of a mixture of phenanthrene and benzene using two different tubular microbial fuel cells (MFCs) designed for either in situ and ex situ applications in aqueous systems was investigated over long operational periods (up to 155 days). For in situ deployments, simultaneous removal of the petroleum hydrocarbons (>90% in term of degradation efficiency) and bromate, used as catholyte, (up to 79%) with concomitant biogenic electricity generation (peak power density up to 6.75 mWm−2) were obtained at a hydraulic retention time (HRT) of 10 days. The tubular MFC could be operated successfully at copiotrophic (100 ppm phenanthrene, 2000 ppm benzene at HRT 30 days) and oligotrophic (phenanthrene and benzene, 50 ppb each, HRT 10 days) substrate conditions suggesting its effectiveness and robustness at extreme substrate concentrations in anoxic environments. In the MFC designed for ex situ deployments, optimum MFC performance was obtained at HRT of 30 h giving COD removal and maximum power output of approximately 77% and 6.75 mWm−2 respectively. The MFC exhibited the ability to resist organic shock loadings and could maintain stable MFC performance. Results of this study suggest the potential use of MFC technology for possible in situ/ex situ hydrocarbon-contaminated groundwater treatment or refinery effluents clean-up, even at extreme contaminant level conditions.