5 resultados para Mathematical ability
em WestminsterResearch - UK
Resumo:
In this paper, we describe a study of the abstract thinking skills of a group of students studying object-oriented modelling as part of a Masters course. Abstract thinking has long been considered a core skill for computer scientists. This study is part of attempts to gather evidence about the link between abstract thinking skills and success in the Computer Science discipline. The results of this study show a positive correlation between the scores of the students in the abstract thinking test with the marks achieved in the module. However, the small numbers in the study mean that wider research is needed.
Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability
Resumo:
Spinal cord regenerative ability is lost with development, but the mechanisms underlying this loss are still poorly understood. In chick embryos, effective regeneration does not occur after E13, when spinal cord injury induces extensive apoptotic response and tissue damage. As initial experiments showed that treatment with a calcium chelator after spinal cord injury reduced apoptosis and cavitation, we hypothesized that developmentally regulated mediators of calcium-dependent processes in secondary injury response may contribute to loss of regenerative ability. To this purpose we screened for such changes in chick spinal cords at stages of development permissive (E11) and non-permissive (E15) for regeneration. Among the developmentally regulated calcium-dependent proteins identified was PAD3, a member of the peptidylarginine deiminase (PAD) enzyme family that converts protein arginine residues to citrulline, a process known as deimination or citrullination. This post-translational modification has not been previously associated with response to injury. Following injury, PAD3 up-regulation was greater in spinal cords injured at E15 than at E11. Consistent with these differences in gene expression, deimination was more extensive at the non-regenerating stage, E15, both in the gray and white matter. As deimination paralleled the extent of apoptosis, we investigated the effect of blocking PAD activity on cell death and deiminated-histone 3, one of the PAD targets we identified by mass-spectrometry analysis of spinal cord deiminated proteins. Treatment with the PAD inhibitor, Cl-amidine, reduced the abundance of deiminated-histone 3, consistent with inhibition of PAD activity, and significantly reduced apoptosis and tissue loss following injury at E15. Altogether, our findings identify PADs and deimination as developmentally regulated modulators of secondary injury response, and suggest that PADs might be valuable therapeutic targets for spinal cord injury.
Resumo:
The move into higher education is a real challenge for students from all educational backgrounds, with the adaptation to a new curriculum and style of learning and teaching posing a daunting task. A series of exercises were planned to boost the impact of the mathematics support for level four students and was focussed around a core module for all students. The intention was to develop greater confidence in tackling mathematical problems in all levels of ability and to provide more structured transition period in the first semester of level 4. Over a two-year period the teaching team for Biochemistry and Molecular Biology provided a series of structured formative tutorials and “interactive” online problems. Video solutions to all formative problems were made available, in order that students were able to engage with the problems at any time and were not disadvantaged if they could not attend. The formative problems were specifically set to dovetail into a practical report in which the mathematical skills developed were specifically assessed. Students overwhelmingly agreed that the structured formative activities had broadened their understanding of the subject and that more such activities would help. Furthermore, it is interesting to note that the package of changes undertaken resulted in a significant increase in the overall module mark over the two years of development.
Resumo:
It is now well established that some patients who are diagnosed as being in a vegetative state or a minimally conscious state show reliable signs of volition that may only be detected by measuring neural responses. A pertinent question is whether these patients are also capable of logical thought. Here, we validate an fMRI paradigm that can detect the neural fingerprint of reasoning processes and moreover, can confirm whether a participant derives logical answers. We demonstrate the efficacy of this approach in a physically non-communicative patient who had been shown to engage in mental imagery in response to simple audi- tory instructions. Our results demonstrate that this individual retains a remarkable capacity for higher cogni- tion, engaging in the reasoning task and deducing logical answers. We suggest that this approach is suitable for detecting residual reasoning ability using neural responses and could readily be adapted to assess other aspects of cognition.