3 resultados para Material technology

em WestminsterResearch - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study examines the relationship between law, technology and water conflicts from colonial days to the present in traditional (water) tank systems in the south Indian state of Tamil Nadu. Tanks are man-made water systems developed for irrigation and many other purposes in semi-arid areas. The thesis adopts a historical approach to study the development of law, particularly property rights, and takes an empirical approach to investigate the tank conflicts. Archival documents on irrigation development, Case laws, Focus Group Discussions, Open ended Interviews and Field visits to selected tank chains are used as source material for the discussion. Case studies of conflicts are described and analyzed at three levels - Vaigai river basin for a macro level, Kothai Anicut system in Cauvery basin for a meso level, and twenty other interconnected tanks for a micro-level. The thesis deviates from the conventional understanding that tanks as traditional systems as simple and local technologies but considers them to be complex. It argues that the use of commonly held systems such as tanks within the colonial and post colonial laws as state ownership has been the source of many conflicts. In particular, it finds most tank conflicts are a product of progressive and absolute state control over water and the systems established using colonial land revenue administrative law. The law continues to treat tanks as pieces of landed property held by state and the individuals rather than as technology systems that presupposed the regime of property rights introduced after the colonial times. The modern interventions in water including the reservoir building, and altering the hydraulics of rivers and streams aggravate tank conflicts and lead to their further detriment. The study brings the focus to ground realities, and offers new perspectives on understanding tank systems in dynamic ways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac tissue engineering (CTE) is currently a prime focus of research due to an enormous clinical need. In this work, a novel functional material, Poly(3-hydroxyoctanoate), P(3HO), a medium chain length polyhydroxyalkanoate (PHA), produced using bacterial fermentation, was studied as a new potential material for CTE. Engineered constructs with improved mechanical properties, crucial for supporting the organ during new tissue regeneration, and enhanced surface topography, to allow efficient cell adhesion and proliferation, were fabricated. Our results showed that the mechanical properties of the final patches were close to that of cardiac muscle. Biocompatibility of the P(3HO) neat patches, assessed using Neonatal ventricular rat myocytes (NVRM), showed that the polymer was as good as collagen in terms of cell viability, proliferation and adhesion. Enhanced cell adhesion and proliferation properties were observed when porous and fibrous structures were incorporated to the patches. Also, no deleterious effect was observed on the adults cardiomyocytes’ contraction when cardiomyocytes were seeded on the P(3HO) patches. Hence, P(3HO) based multifunctional cardiac patches are promising constructs for efficient CTE. This work will provide a positive impact on the development of P(3HO) and other PHAs as a novel new family of biodegradable functional materials with huge potential in a range of different biomedical applications, particularly CTE, leading to further interest and exploitation of these materials.