4 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood
em WestminsterResearch - UK
Resumo:
The iterative nature of turbo-decoding algorithms increases their complexity compare to conventional FEC decoding algorithms. Two iterative decoding algorithms, Soft-Output-Viterbi Algorithm (SOVA) and Maximum A posteriori Probability (MAP) Algorithm require complex decoding operations over several iteration cycles. So, for real-time implementation of turbo codes, reducing the decoder complexity while preserving bit-error-rate (BER) performance is an important design consideration. In this chapter, a modification to the Max-Log-MAP algorithm is presented. This modification is to scale the extrinsic information exchange between the constituent decoders. The remainder of this chapter is organized as follows: An overview of the turbo encoding and decoding processes, the MAP algorithm and its simplified versions the Log-MAP and Max-Log-MAP algorithms are presented in section 1. The extrinsic information scaling is introduced, simulation results are presented, and the performance of different methods to choose the best scaling factor is discussed in Section 2. Section 3 discusses trends and applications of turbo coding from the perspective of wireless applications.
Resumo:
Coping with an ageing population is a major concern for healthcare organisations around the world. The average cost of hospital care is higher than social care for older and terminally ill patients. Moreover, the average cost of social care increases with the age of the patient. Therefore, it is important to make efficient and fair capacity planning which also incorporates patient centred outcomes. Predictive models can provide predictions which their accuracy can be understood and quantified. Predictive modelling can help patients and carers to get the appropriate support services, and allow clinical decision-makers to improve care quality and reduce the cost of inappropriate hospital and Accident and Emergency admissions. The aim of this study is to provide a review of modelling techniques and frameworks for predictive risk modelling of patients in hospital, based on routinely collected data such as the Hospital Episode Statistics database. A number of sub-problems can be considered such as Length-of-Stay and End-of-Life predictive modelling. The methodologies in the literature are mainly focused on addressing the problems using regression methods and Markov models, and the majority lack generalisability. In some cases, the robustness, accuracy and re-usability of predictive risk models have been shown to be improved using Machine Learning methods. Dynamic Bayesian Network techniques can represent complex correlations models and include small probabilities into the solution. The main focus of this study is to provide a review of major time-varying Dynamic Bayesian Network techniques with applications in healthcare predictive risk modelling.
Resumo:
The UMTS turbo encoder is composed of parallel concatenation of two Recursive Systematic Convolutional (RSC) encoders which start and end at a known state. This trellis termination directly affects the performance of turbo codes. This paper presents performance analysis of multi-point trellis termination of turbo codes which is to terminate RSC encoders at more than one point of the current frame while keeping the interleaver length the same. For long interleaver lengths, this approach provides dividing a data frame into sub-frames which can be treated as independent blocks. A novel decoding architecture using multi-point trellis termination and collision-free interleavers is presented. Collision-free interleavers are used to solve memory collision problems encountered by parallel decoding of turbo codes. The proposed parallel decoding architecture reduces the decoding delay caused by the iterative nature and forward-backward metric computations of turbo decoding algorithms. Our simulations verified that this turbo encoding and decoding scheme shows Bit Error Rate (BER) performance very close to that of the UMTS turbo coding while providing almost %50 time saving for the 2-point termination and %80 time saving for the 5-point termination.