3 resultados para Liver Kinetics

em WestminsterResearch - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context Randomised controlled trials in non-alcoholic fatty liver disease (NAFLD) have shown that regular exercise, even without calorie restriction, reduces liver steatosis. A previous study has shown that 16 weeks supervised exercise training in NAFLD did not affect total VLDL kinetics. Objective To determine the effect of exercise training on intrahepatocellular fat (IHCL) and the kinetics of large triglyceride-(TG)-rich VLDL1 and smaller denser VLDL2 which has a lower TG content. Design A 16 week randomised controlled trial. Patients 27 sedentary patients with NAFLD. Intervention Supervised exercise with moderate-intensity aerobic exercise or conventional lifestyle advice (control). Main outcome Very low density lipoprotein1 (VLDL1) and VLDL2-TG and apolipoproteinB (apoB) kinetics investigated using stable isotopes before and after the intervention. Results In the exercise group VO2max increased by 31±6% (mean±SEM) and IHCL decreased from 19.6% (14.8, 30.0) to 8.9% (5.4, 17.3) (median (IQR)) with no significant change in VO2max or IHCL in the control group (change between groups p<0.001 and p=0.02, respectively). Exercise training increased VLDL1-TG and apoB fractional catabolic rates, a measure of clearance, (change between groups p=0.02 and p=0.01, respectively), and VLDL1-apoB production rate (change between groups p=0.006), with no change in VLDL1 -TG production rate. Plasma TG did not change in either group. Conclusion An increased clearance of VLDL1 may contribute to the significant decrease in liver fat following 16 weeks of exercise in NAFLD. A longer duration or higher intensity exercise interventions may be needed to lower plasma TG and VLDL production rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT AND OBJECTIVE: No current biomarker can reliably predict visceral and liver fat content, both of which are risk factors for cardiovascular disease. Vagal tone has been suggested to influence regional fat deposition. Pancreatic polypeptide (PP) is secreted from the endocrine pancreas under vagal control. We investigated the utility of PP in predicting visceral and liver fat. PATIENTS AND METHODS: Fasting plasma PP concentrations were measured in 104 overweight and obese subjects (46 men and 58 women). In the same subjects, total and regional adipose tissue, including total visceral adipose tissue (VAT) and total subcutaneous adipose tissue (TSAT), were measured using whole-body magnetic resonance imaging. Intrahepatocellular lipid content (IHCL) was quantified by proton magnetic resonance spectroscopy. RESULTS: Fasting plasma PP concentrations positively and significantly correlated with both VAT (r = 0.57, P < .001) and IHCL (r = 0.51, P < .001), but not with TSAT (r = 0.02, P = .88). Fasting PP concentrations independently predicted VAT after controlling for age and sex. Fasting PP concentrations independently predicted IHCL after controlling for age, sex, body mass index (BMI), waist-to-hip ratio, homeostatic model assessment 2-insulin resistance, (HOMA2-IR) and serum concentrations of triglyceride (TG), total cholesterol (TC), and alanine aminotransferase (ALT). Fasting PP concentrations were associated with serum ALT, TG, TC, low- and high-density lipoprotein cholesterol, and blood pressure (P < .05). These associations were mediated by IHCL and/or VAT. Fasting PP and HOMA2-IR were independently significantly associated with hepatic steatosis (P < .01). CONCLUSIONS: Pancreatic polypeptide is a novel predictor of visceral and liver fat content, and thus a potential biomarker for cardiovascular risk stratification and targeted treatment of patients with ectopic fat deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: Existing data regarding the association between growth hormone deficiency (GHD) and liver fat content are conflicting. OBJECTIVE: We aimed i) to assess intrahepatocellular lipid (IHCL) content in hypopituitary adults with GHD compared to matched controls and ii) to evaluate the effect of growth hormone (GH) replacement on IHCL content. DESIGN: Cross-sectional comparison and controlled intervention study. PATIENTS, PARTICIPANTS: Cross-sectional comparison: 22 hypopituitary adults with GHD and 44 healthy controls matched for age, BMI, gender and ethnicity. Intervention study: 9 GHD patients starting GH replacement (GH Rx group), 9 GHD patients not starting replacement therapy (non-GH Rx group). INTERVENTION: Intervention study:GH replacement for 6 months in the GH Rx group, dosage was titrated to achieve normal IGF-1 levels. MAIN OUTCOME MEASURES: IHCL content determined by proton magnetic resonance spectroscopy (1 H MRS). RESULTS: Cross-sectional comparison: There was no difference in IHCL content between GHD patients and healthy controls (1.89% (0.30, 4.03) vs. 1.14% (0.22, 2.32); p=0.2), the prevalence of patients with hepatic steatosis (IHCL of ≥ 5.56%) was similar in the two groups (22.7% vs. 15.9%; chi square probability = 0.4). Intervention study: The change in IHCL content over 6 months did not differ between the GH Rx group and the non-GH Rx group (-0.63 ± 4.53% vs. +0.11 ± 1.46%; p=0.6). CONCLUSIONS: In our study liver fat content and the prevalence of hepatic steatosis did not differ between hypopituitary adults with GHD and matched controls. In GHD patients GH replacement had no effect on liver fat content.