2 resultados para Knowledge of mathematics learning

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge management theory has struggled with the concept of `knowledge creation'. Since the seminal article of Nonaka in 1991, an industry has grown up seeking to capture the knowledge in the heads and hearts of individuals so as to leverage them for organizational learning and growth. But the process of Socialization, Externalization, Combination and Internalization (SECI) outlined by Nonaka and his colleagues has essentially dealt with knowledge transfer rather than knowledge creation. This paper attempts to fill the gap in the process - from Nonaka's own addition of the need for "ba" to Snowden's suggestion of that we consider "Cynefin" as a space for knowledge creation. Drawing upon a much older theoretical frame - work the Johari Window developed in group dynamics, this paper suggests an alternative concept - latent knowledge - and introduces a different model for the process of knowledge creation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to learn new tasks rapidly is a prominent characteristic of human behaviour. This ability relies on flex- ible cognitive systems that adapt in order to encode temporary programs for processing non-automated tasks. Previous functional imaging studies have revealed distinct roles for the lateral frontal cortices (LFCs) and the ven- tral striatum in intentional learning processes. However, the human LFCs are complex; they house multiple dis- tinct sub-regions, each of which co-activates with a different functional network. It remains unclear how these LFC networks differ in their functions and how they coordinate with each other, and the ventral striatum, to support intentional learning. Here, we apply a suite of fMRI connectivity methods to determine how LFC networks activate and interact at different stages of two novel tasks, in which arbitrary stimulus-response rules are learnt either from explicit instruction or by trial-and-error. We report that the networks activate en masse and in synchrony when novel rules are being learnt from instruction. However, these networks are not homogeneous in their functions; instead, the directed connectivities between them vary asymmetrically across the learning timecourse and they disengage from the task sequentially along a rostro-caudal axis. Furthermore, when negative feedback indicates the need to switch to alternative stimulus–response rules, there is additional input to the LFC networks from the ventral striatum. These results support the hypotheses that LFC networks interact as a hierarchical system during intentional learning and that signals from the ventral striatum have a driving influence on this system when the internal program for processing the task is updated.