3 resultados para Jeunes crossover
em WestminsterResearch - UK
Resumo:
This paper presents compensation of all undesired effects (Power Amplifier (PA) nonlinearity, transmitter and receiver antenna crosstalk, before-PA nonlinear crosstalk, Multiple Input Multiple Output (MIMO) channel fading and crosstalk) in MIMO Orthogonal Frequency Division Multiplex (OFDM) wireless systems. It has been demonstrated that reduced-complexity Crossover Digital Predistortion (CO-DPD) algorithm on transmitter side and Matrix Inversion algorithm on receiver side can suppress almost all undesired effects introduced by transmitter, channel and receiver in 4×4 MIMO OFDM System that can be used in modern wireless system applications. A significant complexity reduction is achieved due to the fact that Digital Signal Processing (DSP) during CO-DPD process on transmitter side is done with real instead of complex numbers.
Resumo:
Background: Muscle atrophy is seen ~ 25 % of patients with cardiopulmonary disorders, such as chronic obstructive pulmonary disorder and chronic heart failure. Multiple hypotheses exist for this loss, including inactivity, inflammation, malnutrition and hypoxia. Healthy individuals exposed to chronic hypobaric hypoxia also show wasting, suggesting hypoxia alone is sufficient to induce atrophy. Myostatin regulates muscle mass and may underlie hypoxic-induced atrophy. Our previous work suggests a decrease in plasma myostatin and increase in muscle myostatin following 10 hours of exposure to 12 % O2. Aims: To establish the effect of hypoxic dose on plasma myostatin concentration. Concentration of plasma myostatin following two doses of normobaric hypoxia (10.7 % and 12.3 % O2) in a randomised, single-blinded crossover design (n = 8 lowlanders, n = 1 Sherpa), with plasma collected pre (0 hours), post (2 hours) and 2 hours following (4 hours) exposure. Results: An effect of time was noted, plasma myostatin decreased at 4 hours but not 2 hours relative to 0 hours (p = 0.01; 0 hours = 3.26 [0.408] ng.mL-1, 2 hours = 3.33, [0.426] ng.mL-1, 4 hours = 2.92, [0.342] ng.mL-1). No difference in plasma myostatin response was seen between hypoxic conditions (10.7 % vs. 12.3 % O2). Myostatin reduction in the Sherpa case study was similar to the lowlander cohort. Conclusions: Decreased myostatin peptide expression suggests hypoxia in isolation is sufficient to challenge muscle homeostasis, independent of confounding factors seen in chronic cardiopulmonary disorders, in a manner consistent with our previous work. Decreased myostatin peptide may represent flux towards peripheral muscle, or a reduction to protect muscle mass. Chronic adaption to hypoxia does not appear to protect against this response, however larger cohorts are needed to confirm this. Future work will examine tissue changes in parallel with systemic effects.
Resumo:
Abstract AIMS: The aim of the present study was to investigate whether selective antagonism of the cysteine-X-cysteine chemokine receptor-2 (CXCR2) receptor has any adverse effects on the key innate effector functions of human neutrophils for defence against microbial pathogens. METHODS: In a double-blind, crossover study, 30 healthy volunteers were randomized to treatment with the CXCR2 antagonist AZD5069 (100 mg) or placebo, twice daily orally for 6 days. The peripheral blood neutrophil count was assessed at baseline, daily during treatment and in response to exercise challenge and subcutaneous injection of granulocyte-colony stimulating factor (G-CSF). Neutrophil function was evaluated by phagocytosis of Escherichia coli and by the oxidative burst response to E. coli. RESULTS: AZD5069 treatment reversibly reduced circulating neutrophil count from baseline by a mean [standard deviation (SD)] of -1.67 (0.67) ×10(9) l(-1) vs. 0.19 (0.78) ×10(9) l(-1) for placebo on day 2, returning to baseline by day 7 after the last dose. Despite low counts on day 4, a 10-min exercise challenge increased absolute blood neutrophil count, but the effect with AZD5069 was smaller and not sustained, compared with placebo treatment. Subcutaneous G-CSF on day 5 caused a substantial increase in blood neutrophil count in both placebo- and AZD5069-treated subjects. Superoxide anion production in E. coli-stimulated neutrophils and phagocytosis of E. coli were unaffected by AZD5069 (P = 0.375, P = 0.721, respectively vs. baseline, Day 4). AZD5069 was well tolerated. CONCLUSIONS: CXCR2 antagonism did not appear adversely to affect the mobilization of neutrophils from bone marrow into the peripheral circulation, phagocytosis or the oxidative burst response to bacterial pathogens. This supports the potential of CXCR2 antagonists as a treatment option for diseases in which neutrophils play a pathological role.