9 resultados para Integrated Communication Systems
em WestminsterResearch - UK
Resumo:
A compact highly linear microstrip dual - mode optically switchable filter and a reconfigurable power amplifier are presented. The key characteristics of the dual - mode switchable filter are investigated and described. A second order filter design procedure is outlined to facilitate the realisation of Butterworth and Chebyshev functions. The proposed filter was built and tested with an optical switch, which comprised of a silicon dice acti vated using near infrared light. The measured and simulated results are in good agreement. The measured insertion loss in the ON state was 3.0 dB the isolation in the OFF state was 45 dB at the centre frequency. An evaluation of filter distortion is presen ted for digitally modulated M - QAM and M - QAM OFDM singals.
Resumo:
This paper is on the use and performance of M-path polyphase Infinite Impulse Response (IIR) filters for channelisation, conventionally where Finite Impulse Response (FIR) filters are preferred. This paper specifically focuses on the Discrete Fourier Transform (DFT) modulated filter banks, which are known to be an efficient choice for channelisation in communication systems. In this paper, the low-pass prototype filter for the DFT filter bank has been implemented using an M-path polyphase IIR filter and we show that the spikes present at the stopband can be avoided by making use of the guardbands between narrowband channels. It will be shown that the channelisation performance will not be affected when polyphase IIR filters are employed instead of their counterparts derived from FIR prototype filters. Detailed complexity and performance analysis of the proposed use will be given in this article.
Resumo:
Global navigation satellite system (GNSS) receivers require solutions that are compact, cheap and low-power, in order to enable their widespread proliferation into consumer products. Furthermore, interoperability of GNSS with non-navigation systems, especially communication systems will gain importance in providing the value added services in a variety of sectors, providing seamless quality of service for users. An important step into the market for Galileo is the timely availability of these hybrid multi-mode terminals for consumer applications. However, receiver architectures that are amenable to high-levels of integration will inevitably suffer from RF impairments hindering their easy widespread use in commercial products. This paper studies and presents analytical evaluations of the performance degradation due to the RF impairments and develops algorithms that can compensate for them in the DSP domain at the base band with complexity-reduced hardware overheads, hence, paving the way for low-power, highly integrated multi-mode GNSS receivers.
Resumo:
I and Q Channel phase and gain mismatches are of great concern in communications receiver design. In this paper we carry out a detailed performance analysis of the Blind-Source Seperation (BSS) based imbalance compensation structure. The results indicate that the BSS structure can offer adequate performance for most communication systems. Since the compensation is carried out before any modulation specific processing, the proposed compensation method works with all standard modulation formats.
Resumo:
This paper explores the benefits of compensating transmitter gain and phase inbalances in the receiver for quadrature communication systems. It is assumed that the gain and phase imbalances are introduced at the transmitter only. A simple non-data aided DSP algorithm is used at the reciever to compensate for the imbalances. Computer simulation has been formed to study a coherent QPSK communication system.
Resumo:
This paper investigates the inherent radio frequency analog challenges associated with near field communication systems. Furthermore, the paper presents a digital based sigma-delta modulator for near field communication transmitter implementations. The proposed digital transmitter architecture is designed to best support data intensive applications requiring higher data rates and complex modulation schemes. An NFC transmitter based on a single-bit sigma-delta DAC is introduced, and then the multi-bit extension with necessary simulation results are presented to confirm the suitability of the architecture for near field communication high speed applications.
Resumo:
This letter proposes a high-linearity reconfigurable lower ultra-wideband (3.1–5.25 GHz) filter with independently controlled dual bandnotch at WiMAX 3.5 GHz band and satellite communication systems 4.2 GHz band. Reconfigurability has been achieved by the implementation of Graphene based switches (simulation only) and PIN diodes (measurements). The simulation and measurement results in OFF state show an entire bandpass response from 3.1 GHz to 5.25 GHz and with a very low insertion loss. In ON state, the results show that sharp rejections at 3.5 GHz and 4.2 GHz are achieved, with a low passband insertion loss. The two bandnotch operate independently of each other; thus allowing to control the behaviour of the required bandnotch. The third order intermodulation products were also measured in OFF and ON states and the linearity results have been presented. The filter is able to achieve a high performance with good linearity and no significant loss.