9 resultados para Industries Energy consumption

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper addresses the transport activities and associated energy consumption involved in the production and supply of two products: jeans and yoghurt. In the case of jeans, the analysis is from the locations in which cotton is grown, to retail outlets in the UK; in the case of yoghurt, the analysis is from the supply of milk on farms, to retail outlets in France. The results show that the transport stages from the point of jeans manufacture to UK port are responsible for the greatest proportion of transport energy use per kilogram of jeans in the UK supply chain. In the case of the French yoghurt supply chains, the results indicate that each of the three transport stages from farm to third-party distribution centre consume approximately the same proportion of total freight transport energy. The energy used on the transport stage for yoghurt from third-party distribution centre to retail outlet varies depending on the type of retail outlet served. Far greater quantities of energy are used in transporting jeans than yoghurts from farm/field to retail outlet. This is explained by the distances involved in the respective supply chains. Both case studies demonstrate that the energy used by consumers transporting goods to their homes by car can be as great as total freight transport energy used in the supply chain from farm/field to retail outlet (per kilogram of product transported).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several approaches can be used to analyse performance, energy consumption and CO2 emissions in freight transport. In this paper we define and apply a vehicle-oriented, bottom up survey approach, the so called ‘vehicle approach’, in contrast to a ‘supply chain approach’. The main objective of the approach is to assess the impacts of various freight transport operations on efficiency and energy use. We apply the approach, comparing official statistics on freight transport and energy efficiency in Britain and France. Results on freight intensity, vehicle utilisation, fuel use, fuel efficiency and CO2 intensity are compared for the two countries. The results indicate comparable levels of operational and fuel efficiency in road freight transport operations in the two countries. Issues that can be addressed with the vehicle approach include: the impacts of technology innovations and logistics decisions implemented in freight companies, and the quantification of the effect of policy measures on fuel use at the national level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freight transportation system is critical to economic activity but it carries significant environmental costs, notably GHG emissions and climate change : energy use and corresponding CO2 emissions is increasing faster in freight transport than in other sectors and this increase is primarily the result of increased trade. This paper compares the transport activities, associated energy consumption and CO2 emissions of different supply chains for a range of products in three countries: Belgium, France and United Kingdom. Among the products considered are furniture and ‘fruits & vegetables’. For each of these products, different supply chains, involving more or less transport activity and associated energy consumption are analysed in each country. The comparison highlights some of the main factors that influence GHG emissions for different supply chains and illustrates how they vary according to product and country of final distribution. In more detail, the paper addresses the main differences between the supply chains of these products namely, the origin of their sourcing, the logistical organisation between production and retail and different types of retail outlet. The origin of the sourcing impact is mainly related to distance. The impact of the logistical organisation between raw material and retail on GHG emissions is linked to the mode and vehicle choice and to the load factor. As for retail, the consumer trip emissions, between his home and the retail outlet, are also an important part of the whole supply chain emissions. It is worthwhile to notice that our goal in this project is to consider the whole supply chain, from production to consumption. Therefore a particular focus is put on the mobility behaviours of consumers purchasing the studied products during their shopping and dropping back home activities related to these products. Especially a web based survey has been conducted and the gathered results offer an opportunity for drawing a more detailed picture of the associated CO2 emissions. This paper uses the results of an ongoing research on supply chain energy efficiency, funded by ADEME (the French Energy Agency) through the French program on transport research (PREDIT). This research is based on a comprehensive review of the various approaches to quantifying the environmental impacts of supply chains together with data collection from a range of organisations including manufacturers, retailers and transport companies. We will first present the developed methodologies, then the results corresponding to each studied product will be described. A discussion of the potential application of the research approach to the wider debate about the environmental impact of freight transport and the scope for GHG emissions reduction targets to be achieved will be included.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freight transportation system is critical to economic activity but it carries significant environmental costs, notably GHG emissions and climate change : energy use and corresponding CO2 emissions is increasing faster in freight transport than in other sectors and this increase is primarily the result of increased trade. This paper compares the transport activities, associated energy consumption and CO2 emissions of different supply chains for a range of products in three countries: Belgium, France and United Kingdom. Among the products considered are furniture and fruits & vegetables. For each of these products, different supply chains, involving more or less transport activity and associated energy consumption are analysed in each country. The comparison highlights some of the main factors that influence GHG emissions for different supply chains and illustrates how they vary according to product and country of final distribution. In more detail, the paper addresses the main differences between the supply chains of these products namely, the origin of their sourcing, the logistical organisation between production and retail and different types of retail outlet. The origin of the sourcing impact is mainly related to distance. The impact of the logistical organisation between raw material and retail on GHG emissions is linked to the mode and vehicle choice and to the load factor. As for retail, the consumer trip emissions, between his home and the retail outlet, are also an important part of the whole supply chain emissions. It is worthwhile to notice that our goal in this project is to consider the whole supply chain, from production to consumption. Therefore a particular focus is put on the mobility behaviours of consumers purchasing the studied products during their shopping and dropping back home activities related to these products. Especially a web based survey has been conducted and the gathered results offer an opportunity for drawing a more detailed picture of the associated CO2 emissions. This paper uses the results of an ongoing research on supply chain energy efficiency, funded by ADEME (the French Energy Agency) through the French program on transport research (PREDIT). This research is based on a comprehensive review of the various approaches to quantifying the environmental impacts of supply chains together with data collection from a range of organisations including manufacturers, retailers and transport companies. We will first present the developed methodologies, then the results corresponding to each studied product will be described. A discussion of the potential application of the research approach to the wider debate about the environmental impact of freight transport and the scope for GHG emissions reduction targets to be achieved will be included.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy-using products (EuPs), such as domestic appliances, audio-visual and ICT equipment contribute significantly to CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. To the extent that these policies cause an increase the average production cost of EuPs, they may impose economic costs on producers, or on consumers, or on both. In this theoretical paper, an adaptation of a simple vertical product differentiation model – in which products are characterised in terms of their quality and their energy consumption – is used to analyse the impact of the different EuP polices on product innovation and to assess the resultant economic impacts on producers and consumers. It is shown that whereas the imposition of a binding product standard for energy efficiency unambiguously reduces aggregate profit and increases the average market price in the absence of any learning effects, the introduction or strengthening of demand-side measures (such as energy labelling) may reduce, or increase, aggregate profit. Even in the case where the overall impact is unambiguously negative, the effects of product innovation and learning can be in either direction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy-using Products (EuPs) contribute significantly to the United Kingdom’s CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products (such as minimum performance standards, energy labelling, enhanced capital allowances, etc.) can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. While these policies can impose costs on the producers and consumers of these products in the short run, the process of product innovation may reduce the magnitude of these costs over time. If this is the case, then it is important that the impacts of innovation are taken into account in policy impact assessments. Previous studies have found considerable evidence of experience curve effects for EuP categories (e.g. refrigerators, televisions, etc.), with learning rates of around 20% for both average unit costs and average prices; similar to those found for energy supply technologies. Moreover, the decline in production costs has been accompanied by a significant improvement in the energy efficiency of EuPs. Building on these findings and the results of an empirical analysis of UK sales data for a range of product categories, this paper sets out an analytic framework for assessing the impact of EuP policy interventions on consumers and producers which takes explicit account of the product innovation process. The impact of the product innovation process can be seen in the continuous evolution of the energy class profiles of EuP categories over time; with higher energy classes (e.g. A, A+, etc.) entering the market and increasing their market share, while lower classes (e.g. E, F, etc.) lose share and then leave the market. Furthermore, the average prices of individual energy classes have declined over their respective lives, while new classes have typically entered the market at successively lower “launch prices”. Based on two underlying assumptions regarding the shapes of the “lifecycle profiles” for the relative sales and the relative average mark-ups of individual energy classes, a simple simulation model is developed that can replicate the observed market dynamics in terms of the evolution of market shares and average prices. The model is used to assess the effect of two alternative EuP policy interventions – a minimum energy performance standard and an energy-labelling scheme – on the average unit cost trajectory and the average price trajectory of a typical EuP category, and hence the financial impacts on producers and consumers.