4 resultados para Hemicyanine dye
em WestminsterResearch - UK
Resumo:
The decolourisation of acid orange 7 (AO7) (C.I.15510) through co-metabolism in a microbial fuel cell by Shewanella oneidensis strain 14063 was investigated with respect to the kinetics of decolourisation, extent of degradation and toxicity of biotransformation products. Rapid decolourisation of AO7 (>98% within 30 h) was achieved at all tested dye concentrations with concomitant power production. The aromatic amine degradation products were recalcitrant under tested conditions. The first-order kinetic constant of decolourisation (k) decreased from 0.709 ± 0.05 h−1 to 0.05 ± 0.01 h−1 (co-substrate – pyruvate) when the dye concentration was raised from 35 mg l−1 to 350 mg l−1. The use of unrefined co-substrates such as rapeseed cake, corn-steep liquor and molasses also indicated comparable or better AO7 decolourisation kinetic constant values. The fully decolourised solutions indicated increased toxicity as the initial AO7 concentration was increased. This work highlights the possibility of using microbial fuel cells to achieve high kinetic rates of AO7 decolourisation through co-metabolism with concomitant electricity production and could potentially be utilised as the initial step of a two stage anaerobic/aerobic process for azo dye biotreatment.
Resumo:
Recently, the development of highly inspired biomaterials with multi-functional characteristics has gained considerable attention, especially in biomedical, and other health-related areas of the modern world. It is well-known that the lack of antibacterial potential has significantly limited biomaterials for many challenging applications such as infection free wound healing and/or tissue engineering etc. In this perspective, herein, a series of novel bio-composites with natural phenols as functional entities and keratin-EC as a base material were synthesised by laccase-assisted grafting. Subsequently, the resulting composites were removed from their respective casting surfaces, critically evaluated for their antibacterial and biocompatibility features and information is also given on their soil burial degradation profile. In-situ synthesised phenol-g-keratin-EC bio-composites possess strong anti-bacterial activity against Gram-positive and Gram-negative bacterial strains i.e., B. subtilis NCTC 3610, P. aeruginosa NCTC 10662, E. coli NTCT 10418 and S. aureus NCTC 6571. More specifically, 10HBA-g-keratin-EC and 20T-g-keratin-EC composites were 100% resistant to colonisation against all of the aforementioned bacterial strains, whereas, 15CA-g-keratin-EC and 15GA-g-keratin-EC showed almost negligible colonisation up to a variable extent. Moreover, at various phenolic concentrations used, the newly synthesised composites remained cytocompatible with human keratinocyte-like HaCaT, as an obvious cell ingrowth tendency was observed and indicated by the neutral red dye uptake assay. From the degradation point of view, an increase in the degradation rate was recorded during their soil burial analyses. Our investigations could encourage greater utilisation of natural materials to develop bio-composites with novel and sophisticated characteristics for potential applications.
Resumo:
A thin-layer chromatography (TLC)-bioautographic method was developed with the aim to detect dipeptidyl peptidase IV (DPP IV) inhibitors from plant extracts. The basic principle of the method is that the enzyme (DPP IV) hydrolyzes substrate (Gly-Pro-p-nitroaniline) into p-nitroaniline (pNA), which diazotizes with sodium nitrite, and then reacts with N-(1-naphthyl) ethylenediamine dihydrochloride in turn to form a rose-red azo dye which provides a rose-red background on the TLC plates. The DPP IV inhibitors showed white spots on the background as they blocked enzymolysis of the substrate to produce pNA. The method was validated with respect to selectivity, sensitivity, linearity, precision, recovery, and stability after optimizing key parameters including plate type, time and temperature of incubation, concentration of substrate, enzyme and derivatization reagents, and absorption wavelength. The results showed good lineary within amounts over 0.01–0.1 μg range for the positive control, diprotin A, with the coefficient of determination (r2) = 0.9668. The limits of detection (LOD) and quantification (LOQ) were 5 and 10 ng, respectively. The recoveries ranged from 98.9% to 107.5%. The averages of the intra- and inter-plate reproducibility were in the range of 4.1–9.7% and 7.6–14.7%, respectively. Among the nine methanolic extracts of medicinal herbs screened for DPP IV inhibitors by the newly developed method, Peganum nigellastrum Bunge was found to have one white active spot, which was then isolated and identified as harmine. By spectrophotometric method, harmine hydrochloride was found to have DPP-IV inhibitory activity of 32.4% at 10 mM comparing to that of 54.8% at 50 μM for diprotin A.
Resumo:
Magnetic resonance imaging is a diagnostic tool used for detecting abnormal organs and tissues, often using Gd(III) complexes as contrast-enhancing agents. In this work, core–shell polymer fibers have been prepared using coaxial electrospinning, with the intent of delivering gadolinium (III) diethylenetriaminepentaacetate hydrate (Gd(DTPA)) selectively to the colon. The fibers comprise a poly(ethylene oxide) (PEO) core loaded with Gd(DTPA), and a Eudragit S100 shell. They are homogeneous, with distinct core–shell phases. The components in the fibers are dispersed in an amorphous fashion. The proton relaxivities of Gd(DTPA) are preserved after electrospinning. To permit easy visualization of the release of the active ingredient from the fibers, analogous materials are prepared loaded with the dye rhodamine B. Very little release is seen in a pH 1.0 buffer, while sustained release is seen at pH 7.4. The fibers thus have the potential to selectively deliver Gd(DTPA) to the colon. Mucoadhesion studies reveal there are strong adhesive forces between porcine colon mucosa and PEO from the core, and the dye-loaded fibers can be successfully used to image the porcine colon wall. The electrospun core–shell fibers prepared in this work can thus be developed as advanced functional materials for effective imaging of colonic abnormalities.