2 resultados para Guanidine Hydrochloride
em WestminsterResearch - UK
Resumo:
A thin-layer chromatography (TLC)-bioautographic method was developed with the aim to detect dipeptidyl peptidase IV (DPP IV) inhibitors from plant extracts. The basic principle of the method is that the enzyme (DPP IV) hydrolyzes substrate (Gly-Pro-p-nitroaniline) into p-nitroaniline (pNA), which diazotizes with sodium nitrite, and then reacts with N-(1-naphthyl) ethylenediamine dihydrochloride in turn to form a rose-red azo dye which provides a rose-red background on the TLC plates. The DPP IV inhibitors showed white spots on the background as they blocked enzymolysis of the substrate to produce pNA. The method was validated with respect to selectivity, sensitivity, linearity, precision, recovery, and stability after optimizing key parameters including plate type, time and temperature of incubation, concentration of substrate, enzyme and derivatization reagents, and absorption wavelength. The results showed good lineary within amounts over 0.01–0.1 μg range for the positive control, diprotin A, with the coefficient of determination (r2) = 0.9668. The limits of detection (LOD) and quantification (LOQ) were 5 and 10 ng, respectively. The recoveries ranged from 98.9% to 107.5%. The averages of the intra- and inter-plate reproducibility were in the range of 4.1–9.7% and 7.6–14.7%, respectively. Among the nine methanolic extracts of medicinal herbs screened for DPP IV inhibitors by the newly developed method, Peganum nigellastrum Bunge was found to have one white active spot, which was then isolated and identified as harmine. By spectrophotometric method, harmine hydrochloride was found to have DPP-IV inhibitory activity of 32.4% at 10 mM comparing to that of 54.8% at 50 μM for diprotin A.
Resumo:
Plantaginis Semen is commonly used in traditional medicine to treat edema, hypertension, and diabetes. The commercially available Plantaginis Semen in China mainly comes from three species. To clarify the chemical composition and distinct different species of Plantaginis Semen, we established a metabolite profiling method based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. A total of 108 compounds, including phenylethanoid glycosides, flavonoids, guanidine derivatives, terpenoids, organic acids, and fatty acids, were identified from Plantago asiatica L., P. depressa Willd., and P. major L. Results showed significant differences in chemical components among the three species, particularly flavonoids. This study is the first to provide a comprehensive chemical profile of Plantaginis Semen, which could be involved into the quality control, medication guide, and developing new drug of Plantago seeds.