2 resultados para Geo-statistical model
em WestminsterResearch - UK
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.
Resumo:
In the age of E-Business many companies faced with massive data sets that must be analysed for gaining a competitive edge. these data sets are in many instances incomplete and quite often not of very high quality. Although statistical analysis can be used to pre-process these data sets, this technique has its own limitations. In this paper we are presenting a system - and its underlying model - that can be used to test the integrity of existing data and pre-process the data into clearer data sets to be mined. LH5 is a rule-based system, capable of self-learning and is illustrated using a medical data set.