4 resultados para Gemstone Team FACE
em WestminsterResearch - UK
Resumo:
This study addresses our approach to the difficult task of measuring the impact of an eLearning service, the Graduate Virtual Research Environment (GVRE), provided to doctoral students at a UK University since October 2009. The GVRE provides research students with access to a training needs analysis tool which is linked to a repository of video learning resources created by academics and experienced research students. This paper explores the use of the Rugby Team Impact Framework as a guide to measuring impact and our use of a number of techniques to gather evidence about the changes resulting from use of the GVRE. The framework gives four levels of evidence, starting with simple measures of provision, through attendance, interest and to outcomes. As with other research, we found the former easy to assess but the outcomes harder to define. We conclude with a critical evaluation of our research process and outcomes.
Resumo:
Face recognition from images or video footage requires a certain level of recorded image quality. This paper derives acceptable bitrates (relating to levels of compression and consequently quality) of footage with human faces, using an industry implementation of the standard H.264/MPEG-4 AVC and the Closed-Circuit Television (CCTV) recording systems on London buses. The London buses application is utilized as a case study for setting up a methodology and implementing suitable data analysis for face recognition from recorded footage, which has been degraded by compression. The majority of CCTV recorders on buses use a proprietary format based on the H.264/MPEG-4 AVC video coding standard, exploiting both spatial and temporal redundancy. Low bitrates are favored in the CCTV industry for saving storage and transmission bandwidth, but they compromise the image usefulness of the recorded imagery. In this context, usefulness is determined by the presence of enough facial information remaining in the compressed image to allow a specialist to recognize a person. The investigation includes four steps: (1) Development of a video dataset representative of typical CCTV bus scenarios. (2) Selection and grouping of video scenes based on local (facial) and global (entire scene) content properties. (3) Psychophysical investigations to identify the key scenes, which are most affected by compression, using an industry implementation of H.264/MPEG-4 AVC. (4) Testing of CCTV recording systems on buses with the key scenes and further psychophysical investigations. The results showed a dependency upon scene content properties. Very dark scenes and scenes with high levels of spatial–temporal busyness were the most challenging to compress, requiring higher bitrates to maintain useful information.
Resumo:
We present a method for recovering facial shape using an image of a face and a reference model. The zenith angle of the surface normal is recovered directly from the intensities of the image. The azimuth angle of the reference model is then combined with the calculated zenith angle in order to get a new field of surface normals. After integration of the needle map, the recovered surface has the effect of mapped facial features over the reference model. Experiments demonstrate that for the lambertian case, surface recovery is achieved with high accuracy. For non-Lambertian cases, experiments suggest potential for face recognition applications.