3 resultados para Gauss-Bonnet theorem
em WestminsterResearch - UK
Resumo:
In proposing theories of how we should design and specify networks of processes it is necessary to show that the semantics of any language we use to write down the intended behaviours of a system has several qualities. First in that the meaning of what is written on the page reflects the intention of the designer; second that there are no unexpected behaviours that might arise in a specified system that are hidden from the unsuspecting specifier; and third that the intention for the design of the behaviour of a network of processes can be communicated clearly and intuitively to others. In order to achieve this we have developed a variant of CSP, called CSPt, designed to solve the problems of termination of parallel processes present in the original formulation of CSP. In CSPt we introduced three parallel operators, each with a different kind of termination semantics, which we call synchronous, asynchronous and race. These operators provide specifiers with an expressive and flexible tool kit to define the intended behaviour of a system in such a way that unexpected or unwanted behaviours are guaranteed not to take place. In this paper we extend out analysis of CSPt and introduce the notion of an alphabet diagram that illustrates the different categories of events that can arise in the parallel composition of processes. These alphabet diagrams are then used to analyse networks of three processes in parallel with the aim of identifying sufficient constraints to ensure associativity of their parallel composition. Having achieved this we then proceed to prove associativity laws for the three parallel operators of CSPt. Next, we illustrate how to design and construct a network of three processes that satisfy the associativity law, using the associativity theorem and alphabet diagrams. Finally, we outline how this could be achieved for more general networks of processes.
Resumo:
In proposing theories of how we should design and specify networks of processes it is necessary to show that the semantics of any language we use to write down the intended behaviours of a system has several qualities. First in that the meaning of what is written on the page reflects the intention of the designer; second that there are no unexpected behaviours that might arise in a specified system that are hidden from the unsuspecting specifier; and third that the intention for the design of the behaviour of a network of processes can be communicated clearly and intuitively to others. In order to achieve this we have developed a variant of CSP, called CSPt, designed to solve the problems of termination of parallel processes present in the original formulation of CSP. In CSPt we introduced three parallel operators, each with a different kind of termination semantics, which we call synchronous, asynchronous and race. These operators provide specifiers with an expressive and flexible tool kit to define the intended behaviour of a system in such a way that unexpected or unwanted behaviours are guaranteed not to take place. In this paper we extend out analysis of CSPt and introduce the notion of an alphabet diagram that illustrates the different categories of events that can arise in the parallel composition of processes. These alphabet diagrams are then used to analyse networks of three processes in parallel with the aim of identifying sufficient constraints to ensure associativity of their parallel composition. Having achieved this we then proceed to prove associativity laws for the three parallel operators of CSPt. Next, we illustrate how to design and construct a network of three processes that satisfy the associativity law, using the associativity theorem and alphabet diagrams. Finally, we outline how this could be achieved for more general networks of processes.
Resumo:
This study shows that the relaxivity and optical properties of functionalised lanthanide-DTPA-bis-amide complexes (lanthanide=Gd3+ and Eu3+, DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln3+/anion coordination. Zinc(II)-dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide “arms” of these ligands, and the interaction of the resulting Gd–Zn2 complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine-5′-triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H2O and D2O, 17O and 31P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out.