1 resultado para GROWTH-MECHANISM
em WestminsterResearch - UK
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (23)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (21)
- Brock University, Canada (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (34)
- CentAUR: Central Archive University of Reading - UK (12)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (129)
- Cochin University of Science & Technology (CUSAT), India (7)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (9)
- Digital Commons at Florida International University (4)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (34)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (83)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (74)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (9)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (275)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal de Goiás - UFG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (71)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (6)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (16)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction.