3 resultados para GPS tracking
em WestminsterResearch - UK
Resumo:
This paper compares a carrier tracking scenario when a received Global Positioning System (GPS) signal has low Doppler frequency. It is shown that if the Numerically Controlled Oscillator (NCO) is quantized to 1 bit, the carrier tracking loop is unable to keep track of the incoming signal which leaves the tracking loop oscillating between the upper and lower bounds of the tracking loop bandwidth. One way of overcoming this problem is presented and compared with another existing solution, found in the literature, providing comparative results from the use of real-recorded off the air GPS L1 signals. Results show that the proposed method performs better tracking performance compared with the existing solution which it requires much less hardware complexity.
Resumo:
This paper presents the design and implementation of a dual–tracking Radio Frequency (RF) front–end for a multi–constellation Global Navigation Satellite Systems (GNSS) receiver. The RF frond–end is based on the direct RF conversion architecture, which employs sub–Nyquist sampling (also known as subsampling) at RF. The dual–tracking RF front–end is composed of a few RF components that are duplicated to form the two RF channels. Employing a dual–channel Analogue–to–Digital Converter (ADC) enables synchronisation of the RF channels and minimises the errors resulting from the differences in the satellite clocks and the propagation delay between the two RF channels. The digitised GNSS signals are processed by two separate acquisition and tracking engines that are driven by the front–end’s master clock. This setup provides two synchronised receivers that are integrated onto one piece of hardware. The hardware is intended to be used for research applications such as multipath mitigation, scintillation assessment, and advanced satellite clock and spatial frame transformation modelling.