2 resultados para Fuzzy c-means algorithm
em WestminsterResearch - UK
Resumo:
Ground Delay Programs (GDP) are sometimes cancelled before their initial planned duration and for this reason aircraft are delayed when it is no longer needed. Recovering this delay usually leads to extra fuel consumption, since the aircraft will typically depart after having absorbed on ground their assigned delay and, therefore, they will need to cruise at more fuel consuming speeds. Past research has proposed speed reduction strategy aiming at splitting the GDP-assigned delay between ground and airborne delay, while using the same fuel as in nominal conditions. Being airborne earlier, an aircraft can speed up to nominal cruise speed and recover part of the GDP delay without incurring extra fuel consumption if the GDP is cancelled earlier than planned. In this paper, all GDP initiatives that occurred in San Francisco International Airport during 2006 are studied and characterised by a K-means algorithm into three different clusters. The centroids for these three clusters have been used to simulate three different GDPs at the airport by using a realistic set of inbound traffic and the Future Air Traffic Management Concepts Evaluation Tool (FACET). The amount of delay that can be recovered using this cruise speed reduction technique, as a function of the GDP cancellation time, has been computed and compared with the delay recovered with the current concept of operations. Simulations have been conducted in calm wind situation and without considering a radius of exemption. Results indicate that when aircraft depart early and fly at the slower speed they can recover additional delays, compared to current operations where all delays are absorbed prior to take-off, in the event the GDP cancels early. There is a variability of extra delay recovered, being more significant, in relative terms, for those GDPs with a relatively low amount of demand exceeding the airport capacity.
Resumo:
The design of reverse logistics networks has now emerged as a major issue for manufacturers, not only in developed countries where legislation and societal pressures are strong, but also in developing countries where the adoption of reverse logistics practices may offer a competitive advantage. This paper presents a new model for partner selection for reverse logistic centres in green supply chains. The model offers three advantages. Firstly, it enables economic, environment, and social factors to be considered simultaneously. Secondly, by integrating fuzzy set theory and artificial immune optimization technology, it enables both quantitative and qualitative criteria to be considered simultaneously throughout the whole decision-making process. Thirdly, it extends the flat criteria structure for partner selection evaluation for reverse logistics centres to the more suitable hierarchy structure. The applicability of the model is demonstrated by means of an empirical application based on data from a Chinese electronic equipment and instruments manufacturing company.