5 resultados para Fuzzy ARTMAP (FAM). Categories proliferation. Polytopes. Geometry of categories. Adaptive resonance theory.
em WestminsterResearch - UK
Resumo:
In this paper, we carry out a detailed performance analysis of the blind source separation based I/Q corrector operating at the baseband. Performance of the digital I/Q corrector is evaluated not only under time-varying phase and gain errors but also in the presence of multipath and Rayleigh fading channels. Performance under low-SNR and different modulation formats and constellation sizes is also evaluated. What is more, BER improvement after correction is illustrated. The results indicate that the adaptive algorithm offers adequate performance for most communication applications hence, reducing the matching requirements of the analog front-end enabling higher levels of integration.
Resumo:
The I/Q mismatches in quadrature radio receivers results in finite and usually insufficient image rejection, degrading the performance greatly. In this paper we present a detailed analysis of the Blind-Source Separation (BSS) based mismatch corrector in terms of its structure, convergence and performance. The results indicate that the mismatch can be effectively compensated during the normal operation as well as in the rapidly changing environments. Since the compensation is carried out before any modulation specific processing, the proposed method works with all standard modulation formats and is amenable to low-power implementations.
Resumo:
This paper deals with and details the design and implementation of a low-power; hardware-efficient adaptive self-calibrating image rejection receiver based on blind-source-separation that alleviates the RF analog front-end impairments. Hybrid strength-reduced and re-scheduled data-flow, low-power implementation of the adaptive self-calibration algorithm is developed and its efficiency is demonstrated through simulation case studies. A behavioral and structural model is developed in Matlab as well as a low-level architectural design in VHDL providing valuable test benches for the performance measures undertaken on the detailed algorithms and structures.
Resumo:
Food product safety is one of the most promising areas for the application of electronic noses. The performance of a portable electronic nose has been evaluated in monitoring the spoilage of beef fillet stored aerobically at different storage temperatures (0, 4, 8, 12, 16 and 20°C). This paper proposes a fuzzy-wavelet neural network model which incorporates a clustering pre-processing stage for the definition of fuzzy rules. The dual purpose of the proposed modeling approach is not only to classify beef samples in the respective quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population directly from volatile compounds fingerprints. Comparison results indicated that the proposed modeling scheme could be considered as a valuable detection methodology in food microbiology