3 resultados para Fluorescent microspheres
em WestminsterResearch - UK
Resumo:
In the marine environment, phytoplankton and bacterioplankton can be physically associated. Such association has recently been hypothesized to be involved in the toxicity of the dinoflagellate genus Alexandrium. However, the methods, which have been used so far to identify, localize, and quantify bacteria associated with phytoplankton, are either destructive, time consuming, or lack precision. In the present study we combined tyramide signal amplification–fluorescent in situ hybridization (TSA-FISH) with confocal microscopy to determine the physical association of dinoflagellate cells with bacteria. Dinoflagellate attached microflora was successfully identified with TSA-FISH, whereas FISH using monolabeled probes failed to detect bacteria, because of the dinoflagellate autofluorescence. Bacteria attached to entire dinoflagellates were further localized and distinguished from those attached to empty theca, by using calcofluor and DAPI, two fluorochromes that stain dinoflagellate theca and DNA, respectively. The contribution of specific bacterial taxa of attached microflora was assessed by double hybridization. Endocytoplasmic and endonuclear bacteria were successfully identified in the nonthecate dinoflagellate Gyrodinium instriatum. In contrast, intracellular bacteria were not observed in either toxic or nontoxic strains of Alexandrium spp. Finally, the method was successfully tested on natural phytoplankton assemblages, suggesting that this combination of techniques could prove a useful tool for the simultaneous identification, localization, and quantification of bacteria physically associated with dinoflagellates and more generally with phytoplankton.
Resumo:
Poly(3-hydroxybutyrate), P(3HB), produced from Bacillus cereus SPV using a simple glucose feeding strategy was used to fabricate P(3HB) microspheres using a solid-in-oil-water (s/o/w) technique. For this study, several parameters such as polymer concentration, surfactant and stirring rates were varied in order to determine their effect on microsphere characteristics. The average size of the microspheres was in the range of 2 μm to 1.54 μm with specific surface areas varying between 9.60 m(2)/g and 6.05 m(2)/g. Low stirring speed of 300 rpm produced slightly larger microspheres when compared to the smaller microspheres produced when the stirring velocity was increased to 800 rpm. The surface morphology of the microspheres after solvent evaporation appeared smooth when observed under SEM. Gentamicin was encapsulated within these P(3HB) microspheres and the release kinetics from the microspheres exhibiting the highest encapsulation efficiency, which was 48%, was investigated. The in vitro release of gentamicin was bimodal, an initial burst release was observed followed by a diffusion mediated sustained release. Biodegradable P(3HB) microspheres developed in this research has shown high potential to be used in various biomedical applications.
Resumo:
A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stem-Volmer equation. The K-SV for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 x 10(-7)-35.0 x 10(-7) M with a detection limit of 80 nM.