4 resultados para First-order logic

em WestminsterResearch - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two novel effective-fourth-order (eighth-order) resonator based MASH (MultistAge noise SHaping) bandpass Σ-Δ modulators are introduced at the behavioural level and subsequently examined by simulations utilising the ALTA SPW environment. The considered bandpass configurations have in their loop filter a cascade of standard second-order resonator structures in order to achieve appropriate noise shaping. The quantisation noise in each stage is suppressed by feeding the error of each section into the input of the following stage. It is demonstrated in this paper that the quadruple effective-first-order cascade configuration has significantly better performance as well as conforming more closely with theory in comparison with the effective-second-order effective-second-order cascade. The superior performance of the former can be attributed to the cumulative effect of the multi-bit outputs as well as the presence of more notch filters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents simulation results from investigating the behaviour of multistage (MASH) oversampled bandpass sigma-delta (Σ-Δ) modulators for use in analogue to digital converters for high frequency narrowband applications such as the signals out of the intermediate frequency (IF) section of a superheterodyne radio receiver. The bandpass configurations under consideration have in their loop filter a cascade of second-order resonator structures in order to achieve acceptable noise shaping. The quantisation noise in each stage is suppressed by feeding the error of each section into the input of the following stages. It is demonstrated that the triple effective-first-order bandpass MASH structure has significantly better performance compared with the effective-second-order effective-first-order bandpass MASH structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The decolourisation of acid orange 7 (AO7) (C.I.15510) through co-metabolism in a microbial fuel cell by Shewanella oneidensis strain 14063 was investigated with respect to the kinetics of decolourisation, extent of degradation and toxicity of biotransformation products. Rapid decolourisation of AO7 (>98% within 30 h) was achieved at all tested dye concentrations with concomitant power production. The aromatic amine degradation products were recalcitrant under tested conditions. The first-order kinetic constant of decolourisation (k) decreased from 0.709 ± 0.05 h−1 to 0.05 ± 0.01 h−1 (co-substrate – pyruvate) when the dye concentration was raised from 35 mg l−1 to 350 mg l−1. The use of unrefined co-substrates such as rapeseed cake, corn-steep liquor and molasses also indicated comparable or better AO7 decolourisation kinetic constant values. The fully decolourised solutions indicated increased toxicity as the initial AO7 concentration was increased. This work highlights the possibility of using microbial fuel cells to achieve high kinetic rates of AO7 decolourisation through co-metabolism with concomitant electricity production and could potentially be utilised as the initial step of a two stage anaerobic/aerobic process for azo dye biotreatment.