2 resultados para Fimh Adhesin

em WestminsterResearch - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusobacterium necrophorum is a causative agent of persistent sore throat syndrome, tonsillar abscesses and Lemierre’s syndrome (LS) in humans. LS is characterised by thrombophlebitis of the jugular vein and bacteraemia. It is a Gram-negative, anaerobic bacterium which to date has no available reference genome. Draft genomes suggest it to be a single circular chromosome of approximately 2.2Mb. A reference strain of each of the two F. necrophorum subspecies and a clinical isolate from a LS patient were sequenced on a Roche 454 GS-FLX+. Sequence data was assembled using Roche GS Assembler and the resulting contigs annotated using xBASE, Pfam and BLAST. The annotation data was mined for gene products associated with virulence revealing a leukotoxin, haemolysin, filamentous haemagglutinnin, adhesin, hemin receptor, phage genes, CRISPR-associated proteins, ecotin and a putative type V secretion system. Data will be presented on comparative genomics of the three strains, with a focus on putative virulence genes. Tools such as Artemis Comparison Tool and ClustalO were used for sequence alignments and PhyML was used to generate phylogenetic trees. Conserved motifs associated with virulence were also located. Understanding variations at the genomic level may help to explain the increased virulence of some F. necrophorum strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusobacterium necrophorum, a Gram negative, anaerobic bacterium, is a common cause of acute pharyngitis and tonsillitis and a rare cause of more severe infections of the head and neck. At the beginning of the project, there was no available genome sequence for F. necrophorum. The aim of this project was to sequence the F. necrophorum genome and identify and study its putative virulence factors contained using in silico and in vitro analysis. Type strains JCM 3718 and JCM 3724,F. necrophorum subspecies necrophorum (Fnn) and funduliforme (Fnf), respectively, and strain ARU 01 (Fnf), isolated from a patient with LS, were commercially sequenced by Roche 454 GS-FLX+ next generation sequencing and assembled into contigs using Roche GS Assembler. Sequence data was annotated semi-automatically, using the xBASE pipeline, BLASTp and Pfam. The F. necrophorum genome was determined to be approximately 2.1 – 2.3 Mb in size, with an estimated 1,950 ORFs and includes genes for a leukotoxin, ecotin, haemolysin, haemagglutinin, haemin receptor, adhesin and type Vb and Vc secretion systems. The prevalence of the leukotoxin gene was investigated in strains JCM 3718, JCM 3724 and ARU 01, as well as a clinical collection of 25 Fnf strains, identified using biochemical and molecular tests. The leukotoxin operon was found to be universal within the strain collection by PCR. HL-60 cells subjected to aliquots of concentrated high molecular weight culture supernatant, predicted to contain the secreted leukotoxins of strains JCM 3718, JCM 3724 and ARU 01, were killed in a dose-dependent manner. The cytotoxic effect of the leukotoxin against human donor white blood cells was also tested to validate the HL-60 assay. The differences in the results between the two assays were not statistically significant. Ecotin, a serine protease inhibitor, was found to be present in 100 % of the strain collection and had a highly conserved sequence with primary and secondary binding sites exposed on opposing sides of the protein. During enzyme inhibition studies, a purified recombinant F. necrophorum ecotin protein inhibited human neutrophil elastase, a protease that degrades bacteria at inflammation sites, and human plasma kallikrein, a component of the host clotting cascade. The recombinant ecotin also prolonged human plasma clotting times by up to 7-fold for the extrinsic pathway, and up to 40-fold for the intrinsic pathway. The genome sequence data provides important information about F. necrophorum type strains and enables comparative study between strains and subspecies. Results from the leukotoxin and ecotin assays can be used to build up an understanding of how the organism behaves during infection.