4 resultados para Face processing research
em WestminsterResearch - UK
Resumo:
Goldin-Meadow (2015) presents an exceptional synthesis of work from studies of children acquiring language under variable circumstances of input or processing abilities. Deaf children who acquire homesign without any well- formed model from which to learn language represent a powerful example. Goldin-Meadow argues that the resilient properties of language that nevertheless emerge include simple syntactic structures, hierarchical organisa- tion, markers modulating the meaning of sentences, and social-communicative functions. Among the fragile or input-dependent properties are the orders that the language follows, the parts into which words are decomposed, and the features that distinguish nominals from predicates. Separation of these two types of properties poses questions concerning the innate constraints on language acquisition (perhaps these equate to the resilient properties) and con‐ cerning the specificity of processes to language (e.g., whether properties such as hierarchical organisation are specific to language or originate in the structure of thought). The study of the resilient properties of human language in the face of adversity and the relation of these properties to the information that is encoded in the human genome represent a research strategy that draws inferences about species universals (properties that all humans share) from data about individual differences (IDs; factors that make humans different from one another). In the following, we suggest three reasons to be cautious about this approach.
Resumo:
Face recognition from images or video footage requires a certain level of recorded image quality. This paper derives acceptable bitrates (relating to levels of compression and consequently quality) of footage with human faces, using an industry implementation of the standard H.264/MPEG-4 AVC and the Closed-Circuit Television (CCTV) recording systems on London buses. The London buses application is utilized as a case study for setting up a methodology and implementing suitable data analysis for face recognition from recorded footage, which has been degraded by compression. The majority of CCTV recorders on buses use a proprietary format based on the H.264/MPEG-4 AVC video coding standard, exploiting both spatial and temporal redundancy. Low bitrates are favored in the CCTV industry for saving storage and transmission bandwidth, but they compromise the image usefulness of the recorded imagery. In this context, usefulness is determined by the presence of enough facial information remaining in the compressed image to allow a specialist to recognize a person. The investigation includes four steps: (1) Development of a video dataset representative of typical CCTV bus scenarios. (2) Selection and grouping of video scenes based on local (facial) and global (entire scene) content properties. (3) Psychophysical investigations to identify the key scenes, which are most affected by compression, using an industry implementation of H.264/MPEG-4 AVC. (4) Testing of CCTV recording systems on buses with the key scenes and further psychophysical investigations. The results showed a dependency upon scene content properties. Very dark scenes and scenes with high levels of spatial–temporal busyness were the most challenging to compress, requiring higher bitrates to maintain useful information.
Resumo:
Data registration refers to a series of techniques for matching or bringing similar objects or datasets together into alignment. These techniques enjoy widespread use in a diverse variety of applications, such as video coding, tracking, object and face detection and recognition, surveillance and satellite imaging, medical image analysis and structure from motion. Registration methods are as numerous as their manifold uses, from pixel level and block or feature based methods to Fourier domain methods. This book is focused on providing algorithms and image and video techniques for registration and quality performance metrics. The authors provide various assessment metrics for measuring registration quality alongside analyses of registration techniques, introducing and explaining both familiar and state–of–the–art registration methodologies used in a variety of targeted applications.
Resumo:
In recent years, Deep Learning (DL) techniques have gained much at-tention from Artificial Intelligence (AI) and Natural Language Processing (NLP) research communities because these approaches can often learn features from data without the need for human design or engineering interventions. In addition, DL approaches have achieved some remarkable results. In this paper, we have surveyed major recent contributions that use DL techniques for NLP tasks. All these reviewed topics have been limited to show contributions to text understand-ing, such as sentence modelling, sentiment classification, semantic role labelling, question answering, etc. We provide an overview of deep learning architectures based on Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Recursive Neural Networks (RNNs).