3 resultados para Espectroscopia infravermelho Fourier
em WestminsterResearch - UK
Resumo:
This paper describes in detail the design of a CMOS custom fast Fourier transform (FFT) processor for computing a 256-point complex FFT. The FFT is well-suited for real-time spectrum analysis in instrumentation and measurement applications. The FFT butterfly processor reported here consists of one parallel-parallel multiplier and two adders. It is capable of computing one butterfly computation every 100 ns thus it can compute a 256-point complex FFT in 102.4 μs excluding data input and output processes.
Resumo:
This paper introduces a novel method of estimating theFourier transform of deterministic continuous-time signals from a finite number N of their nonuniformly spaced measurements. These samples, located at a mixture of deterministic and random time instants, are collected at sub-Nyquist rates since no constraints are imposed on either the bandwidth or the spectral support of the processed signal. It is shown that the proposed estimation approach converges uniformly for all frequencies at the rate N^−5 or faster. This implies that it significantly outperforms its alias-free-sampling-based predecessors, namely stratified and antithetical stratified estimates, which are shown to uniformly convergence at a rate of N^−1. Simulations are presented to demonstrate the superior performance and low complexity of the introduced technique.