14 resultados para Energy use
em WestminsterResearch - UK
Resumo:
An increasing number of producers, retailers and third-party logistics providers are interested in carrying out energy assessments of their product supply chain. This is due to sensitivity about climate change and carbon emissions, but also to high energy prices. This paper presents an analytical approach developed to measure energy use in logistics activities in product supply chains. The approach (based on the Life Cycle Approach) quantifies energy use in transport and logistics activities at all stages of a product supply chain. The work has demonstrated that such an assessment approach based on the supply chain is useful in comparing the energy use implications of different strategies. This supply chain approach can be used to consider options such as sourcing and distribution centre locations, transport modes, road freight vehicle types and weights, vehicle load factors, empty running, transport distance and the balance between consumer shopping trips and delivery to the home.
Resumo:
The paper addresses the transport activities and associated energy consumption involved in the production and supply of two products: jeans and yoghurt. In the case of jeans, the analysis is from the locations in which cotton is grown, to retail outlets in the UK; in the case of yoghurt, the analysis is from the supply of milk on farms, to retail outlets in France. The results show that the transport stages from the point of jeans manufacture to UK port are responsible for the greatest proportion of transport energy use per kilogram of jeans in the UK supply chain. In the case of the French yoghurt supply chains, the results indicate that each of the three transport stages from farm to third-party distribution centre consume approximately the same proportion of total freight transport energy. The energy used on the transport stage for yoghurt from third-party distribution centre to retail outlet varies depending on the type of retail outlet served. Far greater quantities of energy are used in transporting jeans than yoghurts from farm/field to retail outlet. This is explained by the distances involved in the respective supply chains. Both case studies demonstrate that the energy used by consumers transporting goods to their homes by car can be as great as total freight transport energy used in the supply chain from farm/field to retail outlet (per kilogram of product transported).
Resumo:
Several approaches can be used to analyse performance, energy consumption and CO2 emissions in freight transport. In this paper we define and apply a vehicle-oriented, bottom up survey approach, the so called ‘vehicle approach’, in contrast to a ‘supply chain approach’. The main objective of the approach is to assess the impacts of various freight transport operations on efficiency and energy use. We apply the approach, comparing official statistics on freight transport and energy efficiency in Britain and France. Results on freight intensity, vehicle utilisation, fuel use, fuel efficiency and CO2 intensity are compared for the two countries. The results indicate comparable levels of operational and fuel efficiency in road freight transport operations in the two countries. Issues that can be addressed with the vehicle approach include: the impacts of technology innovations and logistics decisions implemented in freight companies, and the quantification of the effect of policy measures on fuel use at the national level.
Resumo:
Freight transportation system is critical to economic activity but it carries significant environmental costs, notably GHG emissions and climate change : energy use and corresponding CO2 emissions is increasing faster in freight transport than in other sectors and this increase is primarily the result of increased trade. This paper compares the transport activities, associated energy consumption and CO2 emissions of different supply chains for a range of products in three countries: Belgium, France and United Kingdom. Among the products considered are furniture and ‘fruits & vegetables’. For each of these products, different supply chains, involving more or less transport activity and associated energy consumption are analysed in each country. The comparison highlights some of the main factors that influence GHG emissions for different supply chains and illustrates how they vary according to product and country of final distribution. In more detail, the paper addresses the main differences between the supply chains of these products namely, the origin of their sourcing, the logistical organisation between production and retail and different types of retail outlet. The origin of the sourcing impact is mainly related to distance. The impact of the logistical organisation between raw material and retail on GHG emissions is linked to the mode and vehicle choice and to the load factor. As for retail, the consumer trip emissions, between his home and the retail outlet, are also an important part of the whole supply chain emissions. It is worthwhile to notice that our goal in this project is to consider the whole supply chain, from production to consumption. Therefore a particular focus is put on the mobility behaviours of consumers purchasing the studied products during their shopping and dropping back home activities related to these products. Especially a web based survey has been conducted and the gathered results offer an opportunity for drawing a more detailed picture of the associated CO2 emissions. This paper uses the results of an ongoing research on supply chain energy efficiency, funded by ADEME (the French Energy Agency) through the French program on transport research (PREDIT). This research is based on a comprehensive review of the various approaches to quantifying the environmental impacts of supply chains together with data collection from a range of organisations including manufacturers, retailers and transport companies. We will first present the developed methodologies, then the results corresponding to each studied product will be described. A discussion of the potential application of the research approach to the wider debate about the environmental impact of freight transport and the scope for GHG emissions reduction targets to be achieved will be included.
Resumo:
Freight transportation system is critical to economic activity but it carries significant environmental costs, notably GHG emissions and climate change : energy use and corresponding CO2 emissions is increasing faster in freight transport than in other sectors and this increase is primarily the result of increased trade. This paper compares the transport activities, associated energy consumption and CO2 emissions of different supply chains for a range of products in three countries: Belgium, France and United Kingdom. Among the products considered are furniture and fruits & vegetables. For each of these products, different supply chains, involving more or less transport activity and associated energy consumption are analysed in each country. The comparison highlights some of the main factors that influence GHG emissions for different supply chains and illustrates how they vary according to product and country of final distribution. In more detail, the paper addresses the main differences between the supply chains of these products namely, the origin of their sourcing, the logistical organisation between production and retail and different types of retail outlet. The origin of the sourcing impact is mainly related to distance. The impact of the logistical organisation between raw material and retail on GHG emissions is linked to the mode and vehicle choice and to the load factor. As for retail, the consumer trip emissions, between his home and the retail outlet, are also an important part of the whole supply chain emissions. It is worthwhile to notice that our goal in this project is to consider the whole supply chain, from production to consumption. Therefore a particular focus is put on the mobility behaviours of consumers purchasing the studied products during their shopping and dropping back home activities related to these products. Especially a web based survey has been conducted and the gathered results offer an opportunity for drawing a more detailed picture of the associated CO2 emissions. This paper uses the results of an ongoing research on supply chain energy efficiency, funded by ADEME (the French Energy Agency) through the French program on transport research (PREDIT). This research is based on a comprehensive review of the various approaches to quantifying the environmental impacts of supply chains together with data collection from a range of organisations including manufacturers, retailers and transport companies. We will first present the developed methodologies, then the results corresponding to each studied product will be described. A discussion of the potential application of the research approach to the wider debate about the environmental impact of freight transport and the scope for GHG emissions reduction targets to be achieved will be included.
Resumo:
Buildings are responsible for approximately 30% of EU end-use emissions (Bettgenhäuser , et al, 2009) and are at the forefront of efforts to meet emissions targets arising from their design, construction and operation. For the first time in its history, construction industry outputs must meet specific energy targets if planned reductions in greenhouse gas emissions are to be achieved through nearly zero energy buildings (nZEB) (EC, 2010) supported by on-site renewable heat and power. Where individual UK dwellings have been tested before occupation to assess whether they meet energy design criteria, the results indicate what is described as an ‘energy performance gap’, that is, energy use is almost always more than that specified. This leads to the conclusion that the performance gap is, inter alia, a function of the labour process and thus a function of social practice. Social practice theory, based on Schatzki’s model (2002), is utilised to explore the performance gap as a result of the changes demanded in the social practice of building initiated by new energy efficiency rules. The paper aims to open a discussion where failure in technical performance is addressed as a social phenomenon.
Resumo:
The paper addresses the use of Life Cycle Assessment as a tool for analysing freight transport activity in product supply chains. Published works that have assessed freight transport energy use in supply chain operations are reviewed and their results summarized. A case study of the energy use in the supply chains for jeans sold in both the UK and France is presented. The results of this case study indicate that the location from which cotton is sourced can have a major impact on the total energy used in commercial transport in the jeans supply chain. However, overall, this has a limited impact on the total energy used in producing and supplying jeans. This is because the vast majority of total energy used in the supply chain is consumed during cotton cultivation, denim production and jeans manufacture. The work also demonstrates that the amount of energy used by consumers transporting jeans to their homes by car can be greater than the total commercial transport energy used in the supply chain (per kg of jeans transported).
Resumo:
The paper compares the approach being taken to freight transport strategy and the specific policy measures being implemented in London and Paris. It highlights the serious consideration that has been given to freight transport by the Mayors of London and Paris in the last five years. These freight policy considerations are taking place against a background of growing levels of road freight activity, energy use and pollutant emissions in both cities. The key freight transport objectives being followed in London and Paris are similar and focus on improving the efficiency and reliability of freight transport while reducing the negative environmental impacts that it causes. The specific freight transport policy measures being followed show some differences in each city. However, attempts to address problems related to loading and unloading are taking place in both, albeit through different specific initiatives. These policy initiatives have important implications for companies concerned with urban logistics operations.
Resumo:
Over the last decade we have seen the growth and development of low carbon lifestyle movement organisations, which seek to encourage members of the public to reduce their personal energy use and carbon emissions. As a first step to assess the transformational potential of such organisations, this paper examines the ways in which they frame their activities. This reveals an important challenge they face: in addressing the broader public, do they promote ‘transformative’ behaviours or do they limit themselves to encouraging ‘easy changes’ to maintain their appeal? We find evidence that many organisations within this movement avoid ‘transformative’ frames. The main reasons for this are organisers’ perceptions that transformational frames lack resonance with broader audiences, as well as wider cultural contexts that caution against behavioural intervention. The analysis draws on interviews with key actors in the low carbon lifestyle movement and combines insights from the literatures on collective action framing and lifestyle movements.
Resumo:
Energy-using products (EuPs), such as domestic appliances, audio-visual and ICT equipment contribute significantly to CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. To the extent that these policies cause an increase the average production cost of EuPs, they may impose economic costs on producers, or on consumers, or on both. In this theoretical paper, an adaptation of a simple vertical product differentiation model – in which products are characterised in terms of their quality and their energy consumption – is used to analyse the impact of the different EuP polices on product innovation and to assess the resultant economic impacts on producers and consumers. It is shown that whereas the imposition of a binding product standard for energy efficiency unambiguously reduces aggregate profit and increases the average market price in the absence of any learning effects, the introduction or strengthening of demand-side measures (such as energy labelling) may reduce, or increase, aggregate profit. Even in the case where the overall impact is unambiguously negative, the effects of product innovation and learning can be in either direction.
Resumo:
Energy-using Products (EuPs) contribute significantly to the United Kingdom’s CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products (such as minimum performance standards, energy labelling, enhanced capital allowances, etc.) can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. While these policies can impose costs on the producers and consumers of these products in the short run, the process of product innovation may reduce the magnitude of these costs over time. If this is the case, then it is important that the impacts of innovation are taken into account in policy impact assessments. Previous studies have found considerable evidence of experience curve effects for EuP categories (e.g. refrigerators, televisions, etc.), with learning rates of around 20% for both average unit costs and average prices; similar to those found for energy supply technologies. Moreover, the decline in production costs has been accompanied by a significant improvement in the energy efficiency of EuPs. Building on these findings and the results of an empirical analysis of UK sales data for a range of product categories, this paper sets out an analytic framework for assessing the impact of EuP policy interventions on consumers and producers which takes explicit account of the product innovation process. The impact of the product innovation process can be seen in the continuous evolution of the energy class profiles of EuP categories over time; with higher energy classes (e.g. A, A+, etc.) entering the market and increasing their market share, while lower classes (e.g. E, F, etc.) lose share and then leave the market. Furthermore, the average prices of individual energy classes have declined over their respective lives, while new classes have typically entered the market at successively lower “launch prices”. Based on two underlying assumptions regarding the shapes of the “lifecycle profiles” for the relative sales and the relative average mark-ups of individual energy classes, a simple simulation model is developed that can replicate the observed market dynamics in terms of the evolution of market shares and average prices. The model is used to assess the effect of two alternative EuP policy interventions – a minimum energy performance standard and an energy-labelling scheme – on the average unit cost trajectory and the average price trajectory of a typical EuP category, and hence the financial impacts on producers and consumers.
Resumo:
Recent developments of high-end processors recognize temperature monitoring and tuning as one of the main challenges towards achieving higher performance given the growing power and temperature constraints. To address this challenge, one needs both suitable thermal energy abstraction and corresponding instrumentation. Our model is based on application-specific parameters such as power consumption, execution time, and asymptotic temperature as well as hardware-specific parameters such as half time for thermal rise or fall. As observed with our out-of-band instrumentation and monitoring infrastructure, the temperature changes follow a relatively slow capacitor-style charge-discharge process. Therefore, we use the lumped thermal model that initiates an exponential process whenever there is a change in processor’s power consumption. Initial experiments with two codes – Firestarter and Nekbone – validate our thermal energy model and demonstrate its use for analyzing and potentially improving the application-specific balance between temperature, power, and performance.