3 resultados para Energy efficient buildings

em WestminsterResearch - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy-efficient computing remains a critical challenge across the wide range of future data-processing engines — from ultra-low-power embedded systems to servers, mainframes, and supercomputers. In addition, the advent of cloud and mobile computing as well as the explosion of IoT technologies have created new research challenges in the already complex, multidimensional space of modern and future computer systems. These new research challenges led to the establishment of the IEEE Rebooting Computing Initiative, which specifically addresses novel low-power solutions and technologies as one of the main areas of concern.With this in mind, we thought it timely to survey the state of the art of energy-efficient computing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we propose a model for intelligent agents (sensors) on a Wireless Sensor Network to guard against energy-drain attacks in an energy-efficient and autonomous manner. This is intended to be achieved via an energy-harvested Wireless Sensor Network using a novel architecture to propagate knowledge to other sensors based on automated reasoning from an attacked sensor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Buildings are responsible for approximately 30% of EU end-use emissions (Bettgenhäuser , et al, 2009) and are at the forefront of efforts to meet emissions targets arising from their design, construction and operation. For the first time in its history, construction industry outputs must meet specific energy targets if planned reductions in greenhouse gas emissions are to be achieved through nearly zero energy buildings (nZEB) (EC, 2010) supported by on-site renewable heat and power. Where individual UK dwellings have been tested before occupation to assess whether they meet energy design criteria, the results indicate what is described as an ‘energy performance gap’, that is, energy use is almost always more than that specified. This leads to the conclusion that the performance gap is, inter alia, a function of the labour process and thus a function of social practice. Social practice theory, based on Schatzki’s model (2002), is utilised to explore the performance gap as a result of the changes demanded in the social practice of building initiated by new energy efficiency rules. The paper aims to open a discussion where failure in technical performance is addressed as a social phenomenon.