3 resultados para Emergency medical system
em WestminsterResearch - UK
Resumo:
In this study, we utilise a novel approach to segment out the ventricular system in a series of high resolution T1-weighted MR images. We present a brain ventricles fast reconstruction method. The method is based on the processing of brain sections and establishing a fixed number of landmarks onto those sections to reconstruct the ventricles 3D surface. Automated landmark extraction is accomplished through the use of the self-organising network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates the classical surface reconstruction and filtering processes. The proposed method offers higher accuracy compared to methods with similar efficiency as Voxel Grid.
Resumo:
Researchers want to analyse Health Care data which may requires large pools of compute and data resources. To have them they need access to Distributed Computing Infrastructures (DCI). To use them it requires expertise which researchers may not have. Workflows can hide infrastructures. There are many workflow systems but they are not interoperable. To learn a workflow system and create workflows in a workflow system may require significant effort. Considering these efforts it is not reasonable to expect that researchers will learn new workflow systems if they want to run workflows of other workflow systems. As a result, the lack of interoperability prevents workflow sharing and a vast amount of research efforts is wasted. The FP7 Sharing Interoperable Workflow for Large-Scale Scientific Simulation on Available DCIs (SHIWA) project developed the Coarse-Grained Interoperability (CGI) to enable workflow sharing. The project created the SHIWA Simulation Platform (SSP) to support CGI as a production-level service. The paper describes how the CGI approach can be used for analysis and simulation in Health Care.
Resumo:
The objective of this study was to develop, test and benchmark a framework and a predictive risk model for hospital emergency readmission within 12 months. We performed the development using routinely collected Hospital Episode Statistics data covering inpatient hospital admissions in England. Three different timeframes were used for training, testing and benchmarking: 1999 to 2004, 2000 to 2005 and 2004 to 2009 financial years. Each timeframe includes 20% of all inpatients admitted within the trigger year. The comparisons were made using positive predictive value, sensitivity and specificity for different risk cut-offs, risk bands and top risk segments, together with the receiver operating characteristic curve. The constructed Bayes Point Machine using this feature selection framework produces a risk probability for each admitted patient, and it was validated for different timeframes, sub-populations and cut-off points. At risk cut-off of 50%, the positive predictive value was 69.3% to 73.7%, the specificity was 88.0% to 88.9% and sensitivity was 44.5% to 46.3% across different timeframes. Also, the area under the receiver operating characteristic curve was 73.0% to 74.3%. The developed framework and model performed considerably better than existing modelling approaches with high precision and moderate sensitivity.