10 resultados para Elasticity Virtualizzazione Scalability Onit Azure AWS Microsoft Cloud Computing
em WestminsterResearch - UK
Resumo:
The potential of cloud computing is gaining significant interest in Modeling & Simulation (M&S). The underlying concept of using computing power as a utility is very attractive to users that can access state-of-the-art hardware and software without capital investment. Moreover, the cloud computing characteristics of rapid elasticity and the ability to scale up or down according to workload make it very attractive to numerous applications including M&S. Research and development work typically focuses on the implementation of cloud-based systems supporting M&S as a Service (MSaaS). Such systems are typically composed of a supply chain of technology services. How is the payment collected from the end-user and distributed to the stakeholders in the supply chain? We discuss the business aspects of developing a cloud platform for various M&S applications. Business models from the perspectives of the stakeholders involved in providing and using MSaaS and cloud computing are investigated and presented.
Resumo:
In this paper we present a concept of an agent-based strategy to allocate services on a Cloud system without overloading nodes and maintaining the system stability with minimum cost. To provide a base for our research we specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. We also present an early version of simulation environment and a prototype of agent-based load balancer implemented in functional language Scala and Akka framework.
Resumo:
This paper introduces a strategy to allocate services on a cloud system without overloading the nodes and maintaining the system stability with minimum cost. We specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. A prototype meta-heuristic load balancer is demonstrated and experimental results are presented and discussed. We also propose a novel genetic algorithm, where population is seeded with the outputs of other meta-heuristic algorithms.
Resumo:
Cloud computing offers massive scalability and elasticity required by many scien-tific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new oppor-tunities for application developers. This paper investigates how workflow sys-tems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data.
Resumo:
The broad capabilities of current mobile devices have paved the way for Mobile Crowd Sensing (MCS) applications. The success of this emerging paradigm strongly depends on the quality of received data which, in turn, is contingent to mass user participation; the broader the participation, the more useful these systems become. However, there is an ongoing trend that tries to integrate MCS applications with emerging computing paradigms such as cloud computing. The intuition is that such a transition can significantly improve the overall efficiency while at the same time it offers stronger security and privacy-preserving mechanisms for the end-user. In this position paper, we dwell on the underpinnings of incorporating cloud computing techniques to facilitate the vast amount of data collected in MCS applications. That is, we present a list of core system, security and privacy requirements that must be met if such a transition is to be successful. To this end, we first address several competing challenges not previously considered in the literature such as the scarce energy resources of battery-powered mobile devices as well as their limited computational resources that they often prevent the use of computationally heavy cryptographic operations and thus offering limited security services to the end-user. Finally, we present a use case scenario as a comprehensive example. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security and privacy do not hinder the migration of MCS systems to the cloud.
Resumo:
Physical location of data in cloud storage is a problem that gains a lot of attention not only from the actual cloud providers but also from the end users' who lately raise many concerns regarding the privacy of their data. It is a common practice that cloud service providers create replicate users' data across multiple physical locations. However, moving data in different countries means that basically the access rights are transferred based on the local laws of the corresponding country. In other words, when a cloud service provider stores users' data in a different country then the transferred data is subject to the data protection laws of the country where the servers are located. In this paper, we propose LocLess, a protocol which is based on a symmetric searchable encryption scheme for protecting users' data from unauthorized access even if the data is transferred to different locations. The idea behind LocLess is that "Once data is placed on the cloud in an unencrypted form or encrypted with a key that is known to the cloud service provider, data privacy becomes an illusion". Hence, the proposed solution is solely based on encrypting data with a key that is only known to the data owner.
Resumo:
Simulating the efficiency of business processes could reveal crucial bottlenecks for manufacturing companies and could lead to significant optimizations resulting in decreased time to market, more efficient resource utilization, and larger profit. While such business optimization software is widely utilized by larger companies, SMEs typically do not have the required expertise and resources to efficiently exploit these advantages. The aim of this work is to explore how simulation software vendors and consultancies can extend their portfolio to SMEs by providing business process optimization based on a cloud computing platform. By executing simulation runs on the cloud, software vendors and associated business consultancies can get access to large computing power and data storage capacity on demand, run large simulation scenarios on behalf of their clients, analyze simulation results, and advise their clients regarding process optimization. The solution is mutually beneficial for both vendor/consultant and the end-user SME. End-user companies will only pay for the service without requiring large upfront costs for software licenses and expensive hardware. Software vendors can extend their business towards the SME market with potentially huge benefits.
Resumo:
This paper describes the impact of cloud computing and the use of GPUs on the performance of Autodock and Gromacs respectively. Cloud computing was applicable to reducing the ‘‘tail’’ seen in running Autodock on desktop grids and the GPU version of Gromacs showed significant improvement over the CPU version. A large (200,000 compounds) library of small molecules, seven sialic acid analogues of the putative substrate and 8000 sugar molecules were converted into pdbqt format and used to interrogate the Trichomonas vaginalis neuraminidase using Autodock Vina. Good binding energy was noted for some of the small molecules (~-9 kcal/mol), but the sugars bound with affinity of less than -7.6 kcal/mol. The screening of the sugar library resulted in a ‘‘top hit’’ with a-2,3-sialyllacto-N-fucopentaose III, a derivative of the sialyl Lewisx structure and a known substrate of the enzyme. Indeed in the top 100 hits 8 were related to this structure. A comparison of Autodock Vina and Autodock 4.2 was made for the high affinity small molecules and in some cases the results were superimposable whereas in others, the match was less good. The validation of this work will require extensive ‘‘wet lab’’ work to determine the utility of the workflow in the prediction of potential enzyme inhibitors.
Resumo:
The infrastructure cloud (IaaS) service model offers improved resource flexibility and availability, where tenants - insulated from the minutiae of hardware maintenance - rent computing resources to deploy and operate complex systems. Large-scale services running on IaaS platforms demonstrate the viability of this model; nevertheless, many organizations operating on sensitive data avoid migrating operations to IaaS platforms due to security concerns. In this paper, we describe a framework for data and operation security in IaaS, consisting of protocols for a trusted launch of virtual machines and domain-based storage protection. We continue with an extensive theoretical analysis with proofs about protocol resistance against attacks in the defined threat model. The protocols allow trust to be established by remotely attesting host platform configuration prior to launching guest virtual machines and ensure confidentiality of data in remote storage, with encryption keys maintained outside of the IaaS domain. Presented experimental results demonstrate the validity and efficiency of the proposed protocols. The framework prototype was implemented on a test bed operating a public electronic health record system, showing that the proposed protocols can be integrated into existing cloud environments.
Resumo:
Physical location of data in cloud storage is an increasingly urgent problem. In a short time, it has evolved from the concern of a few regulated businesses to an important consideration for many cloud storage users. One of the characteristics of cloud storage is fluid transfer of data both within and among the data centres of a cloud provider. However, this has weakened the guarantees with respect to control over data replicas, protection of data in transit and physical location of data. This paper addresses the lack of reliable solutions for data placement control in cloud storage systems. We analyse the currently available solutions and identify their shortcomings. Furthermore, we describe a high-level architecture for a trusted, geolocation-based mechanism for data placement control in distributed cloud storage systems, which are the basis of an on-going work to define the detailed protocol and a prototype of such a solution. This mechanism aims to provide granular control over the capabilities of tenants to access data placed on geographically dispersed storage units comprising the cloud storage.