5 resultados para ESSENTIAL SPECTRUM

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes in detail the design of a CMOS custom fast Fourier transform (FFT) processor for computing a 256-point complex FFT. The FFT is well-suited for real-time spectrum analysis in instrumentation and measurement applications. The FFT butterfly processor reported here consists of one parallel-parallel multiplier and two adders. It is capable of computing one butterfly computation every 100 ns thus it can compute a 256-point complex FFT in 102.4 μs excluding data input and output processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes in detail the design of a custom CMOS Fast Fourier Transform (FFT) processor for computing 256-point complex FFT. The FFT is well suited for real-time spectrum analysis in instrumentation and measurement applications. The FFT butterfly processor consists of one parallel-parallel multiplier and two adders. It is capable of computing one butterfly computation every 100 ns thus it can compute 256-complex point FFT in 25.6 μs excluding data input and output processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Driver mutations in the two histone 3.3 (H3.3) genes, H3F3A and H3F3B, were recently identified by whole genome sequencing in 95% of chondroblastoma (CB) and by targeted gene sequencing in 92% of giant cell tumour of bone (GCT). Given the high prevalence of these driver mutations, it may be possible to utilise these alterations as diagnostic adjuncts in clinical practice. Here, we explored the spectrum of H3.3 mutations in a wide range and large number of bone tumours (n 5 412) to determine if these alterations could be used to distinguish GCT from other osteoclast-rich tumours such as aneurysmal bone cyst, nonossifying fibroma, giant cell granuloma, and osteoclast-rich malignant bone tumours and others. In addition, we explored the driver landscape of GCT through whole genome, exome and targeted sequencing (14 gene panel). We found that H3.3 mutations, namely mutations of glycine 34 in H3F3A, occur in 96% of GCT. We did not find additional driver mutations in GCT, including mutations in IDH1, IDH2, USP6, TP53. The genomes of GCT exhibited few somatic mutations, akin to the picture seen in CB. Overall our observations suggest that the presence of H3F3A p.Gly34 mutations does not entirely exclude malignancy in osteoclast-rich tumours. However, H3F3A p.Gly34 mutations appear to be an almost essential feature of GCT that will aid pathological evaluation of bone tumours, especially when confronted with small needle core biopsies. In the absence of H3F3A p.Gly34 mutations, a diagnosis of GCT should be made with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently available rabies post-exposure prophylaxis (PEP) for use in humans includes equine or human rabies immunoglobulins (RIG). The replacement of RIG with an equally or more potent and safer product is strongly encouraged due to the high costs and limited availability of existing RIG. In this study, we identified two broadly neutralizing human monoclonal antibodies that represent a valid and affordable alternative to RIG in rabies PEP. Memory B cells from four selected vaccinated donors were immortalized and monoclonal antibodies were tested for neutralizing activity and epitope specificity. Two antibodies, identified as RVC20 and RVC58 (binding to antigenic site I and III, respectively), were selected for their potency and broad-spectrum reactivity. In vitro, RVC20 and RVC58 were able to neutralize all 35 rabies virus (RABV) and 25 non-RABV lyssaviruses. They showed higher potency and breath compared to antibodies under clinical development (namely CR57, CR4098, and RAB1) and commercially available human RIG. In vivo, the RVC20–RVC58 cocktail protected Syrian hamsters from a lethal RABV challenge and did not affect the endogenous hamster post-vaccination antibody response.